
SOFTWARE
PRODUCTIVITY

TOOLS

A SURVEY FOR
TOSHIBA

M

SOFTWARE
PRODUCTIVITY

TOOLS

A SURVEY FOR
TOSHIBA

A Proprietary Study

Prepared by

INPUT

AUTHOR

-TIM
TITLE

88 X CAT . No . 23-108 PRINTED IN U. S. AT

I

So-f tware Deuel oprnent Tool

Page

I . I n troduc t i on 1

II. Review o-f Past INPUT Research 6

III. Project Research 22

A. Ford Aerospace 22

B. Hewlett-Packard 27

C. Tectronix, Memorex Communications, CXI 30

D. Dialogic Systems, Inc. 31

E. Other Interviews 33

IV. Conclusions and Recommendations 37

A. Conclusions 37

B. Recommendations 43

INPUT

I. Introduction

o The scope of this study probably deserves more resource and time to gain

in-depth insight. However, INPUTs extensive research in productivity

improvement in systems and software implementation will permit us to

place the specific research associated with this study into a broader

•framework which will make it more meaning-ful.

o One observation o-f importance should be made at the beginning: it is

INPUTs opinion that the tools requ i red -for the development o-f business

systems, and those -for the development o-f embedded and/or process control

systems, are becoming indistinguishable as computer/communications

networks permit <and often -force) levels o-f integration where the -flow o-f

business data and i n-f orrnat i on becomes an essential process to the

enterprise. It is also true that productivity tools must assist in the

development o-f applications systems which will be spread over the

processing hierarchy (main-frames, minicomputers, and m i crorocessors) and

be dynamic in the allocation o-f these resources. The -fact that adequate

tools do not currently exist to address these problems is primarily the

result o-f inadequate problem definition rather than technical in nature.

o The research approach INPUT has taken for this study is to rely heavily

upon past detailed research, and use telephone interviews with

recognized experts to update the current status of both specific case

studies involving the use of productivity tools and aids, and to refine

general patterns of acceptance and usage of tools and aids, and to verify

our analysis of the software development productivity problem.

o The major productivity research studies which have been conducted by

INPUT will be referenced in this report. They are as follows:

Digitized by the Internet Archive

in 2015

https://archive.org/details/softwareproducti05unse

The seminal productivity study was sponsored on a multiclient basis

by some o-f the largest corporations in America and consisted o-f the

f ol 1 ow i ng

:

In-depth, on-site interviews were conducted at multiple staff

levels (programmer/analyst through MIS Director) in 60 -firms to

determine their approaches to the improvement o-f software

development and maintenance.

An additional 32 organizations which had enmployed speci-fic

tools, approaches and methodologies were interviewed over the

telephone to complement the on-site interviews.

Approximately 1,300 mail surveys were conducted to provide a

statistical base -for eveluating the results o-f the in-depth

interviews.

Extensive desk research was conducted on published i n-f ormat i on .

When warranted, authors and experts who have made speci-fic

contributions to productivity improvement were interviewed

either in person or on the telephone.

The results o-f this study was presented to clients in a series

o-f seminars, and a 400 page report o-f -findings was published by

INPUT in 1980. (Improving the Productivity o-f Systems and

So-ftware Implementation)

In 1982, INPUT conducted a care-fully selective updating and

extension of Improving the Productivity o-f Systems and Software

-2-

INPUT

Impl ementat i on -for the Computer Development Laboratories <CDL).

This study concentrated on the -following:

On-site interviews with knowledgable experts in seven broad

industry segments.

On-site interviews with -five vendors advocating the -following

approaches to productivity improvement: 4GL/DBMS, applications

packages, information management systems< data management,

statistical analysis, and i n-f orrnat i on <graph i cs> display

systems), custom systems consulting and implementation

services, and data base machines.

In addition, special attention was given to the work being done

in Software Engineering Economics (Barry W.Boehm), Information

Engineering <James Martin and Clive F i nk 1 este i n) , and Queuing

Networks <Dr. Ralph L. Disney).

The results of this study was presented to CDL in a 200 page

report - Software Development Productivity ; INPUT, December

1982.

In 1984, as part of its continuing subscription programs for

computer users and vendors INPUT published two companion reports on

the use of productivity tools, techniques and methodologies.

New Opportunities for Software Productivity Improvement was

addressed to users and focused on the the emerging systems

development environment for business systems and potential

problems associated with that environment.

-3-

INPUT

Market Impact o-f New Software Productivity Techniques contained

specific recommendations -for vendors -for new productivity tools

required to address the anticipated problems o-f the emerging

systems development environment.

In early 1985, INPUT had an opportunity to address the primary issue

which was isolated in the 1984 reports - quality assurance. This

study was conducted -for JIPDEC and included specific case studies

studies o-f what was being done in selected organizations. Both on

site and telephone interviews were conducted and the title o-f the

report was So-ftware Quality Assurance .

Also in 1985, INPUT reviewed the current status o-f knowledge-based

systems (expert systems), as a potential tool -for productivity

improvement. The resulting report - Arti-ficial Intelligence and

Expert Systems was published as part o-f INPUTs subscription program

for computer users.

o Analysis of individual so-ftware development tools has not been attempted

except to classify them based upon their stated purpose and how they have

been employed. INPUT urges caution in accepting published information

concerning productivity improvement based on either vendor claims or as

the result of case studies which have not been thoroughly researched.

There are two reasons for this: 1) valid metrics are seldom employed to

support such claims, and 2) the classic "Hawthorne effect" can be

observed when new tools are introduced into an organization on a trial

bas i s

.

-4-

INPUT

o No attempt to summarize the in-formation contained in this study will be

made since the entire report can be considered a summary of extensive

past research. It is strongly recommended that a more targeted research

project be undertaken i -f the purpose o-f this study is to be used -for

either applications development tool selection or marketing.

-5-

INPUT

II. Review of Past INPUT Research

o The primary conclusions reached in Improving the Productivity of

Systems and Software Implementation (INPUT, 1980) were as -follows:

Then current "solutions" did not solve productivity problems. The

problems were manifested by the following:

Systems were becoming more complex and expensive, and time and

cost overruns were becoming even more of a problem than they

had once been.

Software maintenance was consuming ever increasing amounts of

the software dollar, and users were dissatisfied with quality

and re 1 i ab i 1 i ty

.

Backlogs continued to increase while software related expenses

were becoming an increasing portion of total systems budgets.

Managements perception of the problem was limited to a narrow focus

on schedule overruns and the increasing backlog. Increasing costs

and cost overruns were considered "normal" (or secondary issues),

and software quality was rarely cited as a contributing problem.

The result was undue emphasis upon tools (both hardware and

software) to improve programmer productivity, and failure to develop

a consistant strategy for productive systems development.

The major INPUT conclusion was that an overall strategy was required

and that, unless certain priorities were established, environmental

changes and "investing" in improved tools and would not be

effective. This conclusion lead to the "Productivity Pyramid" which

-6-

INPUT

has been published in numerous INPUT reports. Exhibit II. 1.

Essentially, this relatively simple diagram emphasizes the need to

build an effective strategy -from the bottom up, and it warrants

repetition in this study.

Commitment to quality software may sound simplistic, but there

has been a tendency to concentrate on the latest hardware

technology and assume that necessary software can always be

improved later - the result has been a lot of "quick and dirty

software" at all levels in the processing hierarchy.

User involvement throughout the development process is

absolutely essential if a quality system is to be implemented.

Broadbased management stresses the necessity for all levels of

management <for example, corporate executives and engineering

management) to recognize the importance of quality software

development over the systems life cycle, and to remain involved

in the establishment of priorities and the allocation of

resources

.

Effective personnel can be defined, selected and retained only

with full understanding of systems complexity and associated

pr i or t i es

.

Only after the first four levels of the productivity pyramid

are assured can the r i qh t tool s be selected; and it must be

understood that there is no one right set of tools for all

projects and all personnel.

-7-

INPUT

EXHIBIT 11-1

THE PRODUCTIVITY PYRAMID

-8-

INPUT
XPRO JTOS

While the importance o-f the right tools was placed into proper

perspective in the study, this should not be regarded as a lack o-f

concern about the availability o-f appropriate tools and INPUT

emphasized that available tools usually addressed only portions o-f

the systems life cycle. Exhibit II. 2.

o In view o-f the general statement o-f requirements -for the current study,

it should be pointed out that sponsors o-f the multiclient study included

several aerospace companies where software development for embedded,

on-line, real-time computer systems have long been of primary concern;

and where the most comprehensive work in attempting to improve software

quality and productivity have occurred. An aerospace company which

represented one of the detailed interview sites for the 1980

research<not a sponsor of the study), will be used as a case study later

In this report

.

o The 1982 custom study Software Development Productivity identified major

trend towards getting end users involved in the systems development

process, and speculated that this was the direct result of the

proliferation of personal computers in the corporate environment.

Therefore, information systems managers were using this involvement

because it was expedient <as opposed to any commitment to quality), and

INPUT foresaw certain problems which might attend this approach to

productivity improvement. Specifically, it was stated that:

User-developed systems, including prototypes, will remain installed

and require maintenance and integration with other systems.

-9-

INPUT

EXHIBIT 11-2

STAGES OF PRODUCTIVITY IMPROVEMENT:

COST/BENEFIT RELATIONSHIPS, STAGE 2

LU

D
<
>
a:

<
»j

o
Q

1

CHAOS CONTROL QUALITY

TIME

BENEFIT LINE, WHERE CONTROL AND QUALITY HAVE BEEN
INSTITUTED.
COST LINE, WHERE CONTROL AND QUALITY HAVE BEEN
INSTITUTED.

-10 -

Data and information bases will not be manageable and will

proliferate beyond control.

Data processing personnel will become so involved with the

development of end user directed systems that they will never be

able to consider quality, much less make a commitment to it.

Getting something done quickly, regardless of quality, will be the

order of the day.

The expense of systems development will increase substantially

without really improving productivity.

o In addition, the 1982 study pointed to three areas which seemed promising

to the overall productivity problem:

The work of Barry W. Boehm as presented Software Enoineerino

Econom i cs was mentioned as holding promise for solving the

continuing problems of software productivity measurement and metrics

- prov i ded this work was used intelligently. <It had been earlier

determined that lack of accepted metrics was a significant

impediment to progress in productivity improvement.)

Work in Information Engineering, as espoused by James Martin and

Clive Finklestein was also mentioned as exhibiting some promise in

the critical area of data and information quality. (It should be

pointed out that information quality is an essential ingredient of

productivity improvement whether one is considering the quality and

precision of internal systems interfaces or the communications

among/between project teams and/or individual analysts or

programmers .

)

-11-

INPUT

Work on Queuino Networks as it has evolved in operations research

was deemed to be of particular importance to not only the problems

of internal performance o-f complex systems but also to the problems

which INPUT -felt were inherent in project team commun i cat i ons ; and

an on-site interview with Dr. Ralph L. Disney o-f Virginia

Polytechnic Institute was included as part o-f the study.

All three o-f these major subjects have been brie-fly updated as part

o-f this study.

The two productivity studies conducted by INPUT in 1984 (New

Opportunities -for Software Productivity Improvement and Market Impact of

New Software Productivity Techniques) confirmed some of the anticipated

problems identified in the 1982 study. Essentially, systems were being

prototyped using applications development tools (primarily 46Ls and

DBMSs) , and applications developed in information centers and on personal

computers were being evolved into production systems (or becoming

integrated with established systems). INPUT refers to this environment

as Distributed Systems Development (DSD), and the problems specifically

associated with this environment have been clearly identified:

The synchronization and integrity of data bases in the DSD

environment is a technical problem which does not have an accepted

sol u t i on

.

Security and protection of distributed data bases adds a level of

complexity to a problem which does not currently have accepted,

economical solution.

-12-

INPUT

DSD leads to conflicting reports to management - -frequently without

qualification as to the source.

The integration of systems (applications) developed in the DSD

environment lead to excessive and unanticipated demands being made

upon host mainframes.

In additi on, distributed systems development can actually be

counterproductive even while demonstrating surface productivity

improvement by getting systems developed rapidly and/or on schedule.

This coun terproduc t i v i ty is demonstrated in the following ways:

Deterioration of data/ i nf ormat i on quality.

Unanticipated expense in terms of operational i nef f i c i en i es

,

maintenance required, etc. which results in substantially

higher life cycle costs.

Unworkable solutions (systems which can never go into

production because of poor quality or excess operational

expense)

.

Systems which continue to evolve in endless cycles of

superficial requirements definition, systems analysis, and

quick and dirty implementations designed to show quick

"results" without ever really solving the problem.

Among the tools and aids recommended by INPUT to assure quality in the

DSD environment are the following:

-13-

INPUT

Expanded dictionaries, directories, encyclopedias, and glossaries o-f

data and information are required to assure the quality o-f

communication among systems developers and users.

A meta language (s) is necessary to describe the internal inter-faces

between and among hardware/so-f tware/human components o-f both the

development and target computer/communications networks. (In the

study report, it was suggested that APL might serve this purpose,

and subsequent research tends to con-firm the potential o-f this

1 anguage .

)

Processing and data--flow monitors -for predicting and controlling

network performance are required, and it remains INPUTs opinion that

queuing networks provide a possible -foundation -for such monitors.

(While there has been a substantial communications problem among

operations research analysts, computer scientists, and

mathematicians on queuing networks, progress is currently being

made .

)

An integrated document storage and control system providing

features -for data base and document cert i f i cat i on is necessary.

This implies not only data base integrity, but in-formation -flow

control -for purposes o-f security and protection, and inherent in

such a system is cer t i f i cat i on o-f the processing algorithms creating

i n-f ormat i on .

There is also a need -for tools to analyse productivity tools. The

proliferation o-f "solutions" to the productivity problem have in

themselves become part o-f the productivity problem - there is

-14-

INPUT

substantial residual cost associated with many approaches to

software development productivity improvement. Until measurement o-f

productivity in the systems development process is better

understood, evaluation o-f specific tools will remain difficult -

there-fore, the first step must be in that direction, and meaningful

metrics must be established.

o The 1985 Software Quality Assurance study was directed towards major

government contractors who have had the most extensive experience in

rigorous quality control problems. It was found that some progress has

been made since INPUT identified commitment to quality as the foundation

of any productivity improvement program in its 1980 report.

Specifically, it was found that:

The companies interviewed had established quality assurance programs

which focused attention upon quality as a separate and important

issue over the system life cycle.

The individuals responsible for the operational quality assurance

programs seemed knowledgeable of what could and could not be

accomplished, and were dedicated to improving the quality assurance

programs within their organizations.

o However, there seemed to be little concensus among the various

individuals as to what constitutes an effective quality assurance program

except for management support <broadbased management in the INPUT

productivity pyramid). A number of other conclusions were reached which

support this lack of consensus.

-15-

INPUT

The diversity of tools and approaches being recommended and used

leads to substantial con-fusion in even discussing individual

programs. For example:

Reviews can be extremely detailed or quite superficial, and

"walkthroughs" can range -from actual code inspections to simply

signing off on the paperwork.

Test beds established by the quality assurance function can

perform perfunctory testing as part of the product shipment

process, or can actually be relied upon by the project leaders

to help them in debugging.

There are no magical tools for any phase of the quality assurance

process (including code inspection and testing). As one executive

stated: "Lets face it, if any of us (systems houses) could get a

true 10'/. software productivity advantage no one else could compete.

Therefore, I don't believe there are any magic bullets out there.

And, if I ever find one you can be sure I'm not going to tell anyone

else about it!"

Most of those engaged in operational quality assurance programs feel

that the technical literature on productivity and quality assurance

is the work of theorists who do not understand either the realities

of a highly charged political environment (where emphasis is on

getting the product out the door) or the economics of software

quality assurance (the consensus was that it adds approximately 10X

to the development costs). Therefore, the theoretical solutions to

some of the problems are deemed unacceptable in the real world.

-16-

INPUT

There was one point on which there was consensus, and it was

negative - regardless o-f the methodology employed, substantial

amounts o-f documentation are generated. This adversely a-f-fects

acceptance o-f the quality assurance -function, and also impedes the

quality assurance organization in per-forming its work.

There was a general -feeling that the cost of quality assurance is

difficult to justi-fy because the results cannot be measured. This

brings us right back to the problem o-f measurement which INPUT

identified as the need -for "tools to evaluate tools". This is also

an appropriate lead into a brief analysis of artificial intelligence

and expert systems.

o In the United States, there is currently considerable enthusiasm about

the potential of expert systems to solve many categories of productivity

problems - including those inherent in the systems development process.

INPUT listed ten major categories of expert systems and some potential

personnel impacts in Artificial Intelligence and Expert Systems (1985) .

Exhibit II. 3. Some of the conclusions reached in that study as they

pertain to the development, testing, operation and maintenance of

computer systems are as follows:

The tendency in the computer industry has always been to under

estimate the difficulties of software development. In the case of

expert systems, it is INPUTs conclusion that the building of

knowledge bases to support expert systems will be especially

difficult for the following reasons:

-17-

INPUT

CATEGORIES OF EXPERT

EXHIBIT 11-3

SYSTEMS AND REPRESENTATIVE IMPACTS

CATEGORY
SOME POSSIBLE

IMPACTED PERSONNEL

Interpretive Systems Data Entry Personnel
Business Analysts

Prediction Systems Forecasters

(Including Consultants)

Diagnosis Systems
•

Doctors
Field Engineers

Design Systems Systems and VLSI Designers
Accounting and Financial

Systems Personnel

Planning Systems Programmers
Schedulers

Monitoring Systems Project and Financial

Control Personnel

Debugging Systems Programmers
Circuit Designers

Repair Systems Field Engineers

Instruction Systems Teachers
Training Personnel

Control Systems Industrial Engineers
Investment Analysts

-18-

INPUT
USAI JTOS

The process of building knowledge bases presents a level of

complexity which exceeds that o-f normal systems development and

requires highly skilled personnel who are in short supply.

There is every indication that, except in very narrow domains,

the experts are either unwilling or unable to de-fine how their

knowledge is applied in complex problem solving (which

frequently is highly intuitive) - this is especially true in

such systems problems such as debugging.

Because o-f the very nature o-f expert systems, the potential -for

hidden bugs is substantially greater than in conventional

systems, and the expert may -find it more difficult to analyse

the "solution" presented by the expert system than it would

have been to solve the problem -from scratch.

Having performance better than 90% of human "experts" may not

be acceptable, when problem solutions are normally obtained

from the 10'/. who specialize in solving those particular

problems. (For example in medical diagnosis.)

The question of human differences is especially important in the

systems development process where is has long been recognized that

ranges of programmer/analyst capability vary by several orders of

magnitude. Barry W. Boehm quotes a range of 26 to 1 for programmer

productivity in the debugging process, and INPUTs research confirms

a range of at least that magnitude (in fact, there are those who

state that the range is infinite because some programmer/analysts

would never be able to solve certain problems).

-19-

INPUT

It is INPUTS opinion that the classic 90-10% rule (which states 90%

of a system is normally developed in 10% of the time and the

remaining 10% requires 90% o-f the e-f-fort), applies to individuals as

well as projects - in other words, 10% o-f the programmer/analysts do

90% o-f the productive work, and the remaining 90% contribute only

10% and create a major share o-f the problems -for the highly

productive 10% o-f their -fellow workers. It is, there-fore, extremely

dangerous to make the 90% more productive in producing systems o-f

marginal quality which, in all probability, will require either

replacement or substantial rework. This concern about expert

systems applies as well to other applications development tools

which -facilitate the rapid development o-f low quality systems (that

is the primary reason commitment to quality is at the base o-f the

productivity pyramid). The -fundamental conclusion remains the same

- it is counter-productive to develop low quality systems.

However, it is not our intention to be negative about either expert

systems or other applications development tools, and INPUT supports

the pro-found observation o-f Ada Augusta, Countess o-f Lovelace, about

Charles Babbage's analytical engine:

"It is good to be wary o-f exaggerating the ideas that arise

from the process o-f the analytical engine. There is o-ften a

tendency, in considering any new topic, to initially overrate

the technology, by emphasizeing the interesting or amazing

aspects o-f it. Then, when we realize it doesn't meet our

expectations, we tend to underva 1 ue the true condition o-f the

technol ogy

.

8

-20-

INPUT

It is INPUTs opinion that Lady Lovelace would probably be

appalled at the current propensity to -first overrate and then

undervalue applications development tools - including the

language which bears her name.

o All past INPUT research on so-ftware development productivity points to

the -fact that there are no easy or magical solutions to the so-ftware

development productivity problem and the research -for this study seems to

con-firm that conclusion.

-21-

INPUT

III. Project Research

A. Ford Aerospace Western Development Laboratories

o Ford Aerospace was interviewed on-site during the course of INPUTs 1980

multi-client study and was selected as the primary research source -for

this study -for the following reasons:

The productivity improvement e-f-forts o-f Ford Aerospace were

spec i i i cal 1 y directed towards software development o-f embedded,

on-line, real-time computer systems. INPUT has concluded that

these are o-f particular interest to Toshiba, and we agree that the

complexity o-f todays computer/communications networks (even those o-f

a commercial nature) present all computere systems vendors and users

with development problems which are comparable to those which have

been traditionally -faced by the aerospace industry.

The original research indicated clearly what INPUT considers to be

the complexity o-f evaluating the effectiveness of using software

development tools.

Representatives of Ford Aerospace have been quite open in reporting

the results of their productivity improvement efforts, and this has

not been true of most comparable efforts.

Ford Aerospace western Development Laboratories is conveniently

located to INPUTs corporate offices.

o At the time of INPUTs earlier research, INPUT found that Ford Aerospace

was mounting a substantial effort to improve software development

productivity through both environmental considerations (improved office

-22-

INPUT

workspace and availability o-f terminals), and through the adoption and

extension o-f the Programmer Workbench <PUB) . (It was reported to INPUT

that more than $1 million had been spent enhancing the PUIB.) In 1980, a

coordinated set of methods, standards and procedures were being proposed

for all -future projects, and there was quite a bit o-f enthusiasm at the

executive level about the progress which was being made.

o As mentioned earlier INPUTs approach was to interview at various levels

within the company, and as we proceeded down -from the executive level, we

encountered the -following reactions to the proposed corporate standards

for the development environment.

The manager o-f one major project was -familiar with the

standardization e-f-fort, but stated that his major strength was the

ability to keep together a compatible team -from one project to the

next, and this was accomplished because his employees liked his

management style and his project control system. His attitude was

that any attempt to -force a change would increase both costs and

turnover on his project, and he did not think anyone would want to

take responsibility -for that. His support o-f the corporate e-f-fort

was limited to new projects where new teams are being brought

together - not new projects being given to an established work unit

<such as his).

A project leader interviewed stated she had heard about the PWB and

associated standards but wasn't "worried" because "my project has 2

or 3 years to run, and by that time everyone will have -forgotten

about the standards". Her general attitude was that she would

-23-

INPUT

protect her projects -from unnecessary Intrusion -from a bunch o-f

"corporate types"

.

A programmer interviewed merely stated that it sounded like a lot o-f

"paperwork" to him, but he would depend upon his immediate manager

to take care o-f the problem.

While this highly individualized and resistant attitude may seem

quite -foreign to Japanese management, it is especially common in

so-ftware development in the United States. There is a general

tendency to permit managers and project leaders who are perceived as

being highly productive to continue doing what they are doing as

long as they meet rather poorly de-fined objectives. And, in all

truth, there is some concrete evidence that introduction o-f changes

in methodology or tools will adversely impact productivity o-f those

accustomed to a di-f-ferent working environment.

o In 1984, the -former so-ftware engineering director o-f Ford Aerospace

Western Development Laboratories published a care-fully thoughtout article

on the results o-f the -five year e-f-fort to improve so-ftware productivity.

The -first and most discouraging -fact reported was that the cost per

source instruction (adjusted -for inflation) had gone up between 197? and

1983 (the period covered by the all out e-f-fort). However, there were

some reported changes to explain and o-f-fset this seeming adverse impact

on productivity.

First o-f all, it was pointed out that the systems being developed in

1983 much bigger and more complex with much greater "documentation

and record-keeping demands".

-24-

INPUT

Design level work in Program Design Language <PDL) "-far exceeded the

kind o-f detail thought necessary in 1978-'79> n
.

Unique devices were attached to the computers and they required

special software and timing analysis.

The burden placed on the system at the man-machine inter-face had

greatly increased.

Each computer performed many interleaved -functions and the internal

housekeeping -function lowered e-f-fective throughput which, in turn,

required -further redesign and reprogr amm i ng

.

And, it was then pointed out that quality (in terms o-f detected

discrepancies during final integration) had been improved, and both

estimating and cost control had been improved. The quality o-f

documentation was "so high that it wa probably excessive."

The general conclusion reached was that quality and consistency had

been achieved at the expense o-f productivity. The report went on to

analyze the continuing "productivity problem 0
in more detail and

this will be discussed under conclusions and recommendations.

Discreet inquiries recently revealed that at least some projects at Ford

Aerospace remain outside the standard development procedures which were

being established in 1980, and some project leaders definitely feel the

paperwork involved in using many of the new tools adversely affects their

groups productivity. The general attitude seems to be that the

requirements for tools varies from project to project and selection

should be left to the project leaders.

-25-

INPUT

o Based on the reported results at Ford Aerospace, it is also possible to

raise other questions concerning the true impact o-f the productivity

improvement e-f-fort which could not be pursued with in the limits o-f this

study.

Since it is INPUTs experience that the env i oronmental changes being

pursued by Ford Aerospace (o-f-fice space, terminal access, etc.)

normally result in productivity improvement, was the impact o-f the

standards, methods, and tools <PU)B, PDL, etc.) actually more

negative than the reported modest increase in the cost per source

code instruction?

Were all o-f the costs o-f the productivity improvement program

included in the costs being measured?

Did the tools employed contribute to the increase in complexity

which was observed over the 5 year period?

Were the projects which did not employ the standard tools and

methodologies included in the measurements? And, what was their

realtive impact on the cost per source code instruction?

Were Ford Aerospace projects such as the York an t i -a i rcra-f t gun (a

$1.8 billion project which was scrapped in 1985) included in the

cost per source code instruction calculations? (It became obvious

from the published accounts that some o-f the embedded systems

mal i unct i oned rather dramatically, and this calls into question any

statements about improved quality.)

-26-

INPUT

o INPUT believes the Ford Aerospace experience is especially important in

demonstrating that, despite sincere efforts in establishing a

comprehensive software development productivity improvement program, the

problems of productivity improvement seem to remain. And, Ford Aerospace

is not optimistic about the prospects -for improvement because they have

reached other conclusions based on their experience:

"Integration and testing, although a large part o-f the total cost,

is not a very promising area -for productivity improvement. It is

near the end o-f the development cycle and consequently has little

flexibility and very little multiplier effect. ... Clever

simulators, automatic test sequencing and recording, and even

partial automatic test plan generation would not cause large savings

in this part o-f the development cycle."

And, they con-firm what we all know about coding with the -following

statement: "Suppose we could go to machine instructions directly

from a design language like PDL, all on the computer. That entire

process now represents only 15% or less o-f the cost of producing the

kind o-f software we are concerned with, and a good portion of that

is occupied by module and unit testing. It appears we would be very

lucky indeed to realize an overall improvement in productivity of

10% or more in this area. The technology to go to machine

instructions directly from a design language is still a long way

off. Such a large R&D investment for the potential productivity

yield does not seem cost effective."

B. Hewl ett-Packard

-27-

INPUT

It was pointed out earlier, that most computer and systems companies are

not open about the so-ftware development productivity problem. This is

true -for two reasons:

The problem seems to remain regardless o-f how much e-f-fort is

expended in pursuit o-f its solution.

The people attempting to solve the productivity problem become

personally involved and are reluctant to publicize results which

expose the persistant nature o-f problems which they are supposed to

be able to solve. <In addition, i-f true progress were made it is

probable that the particular solutions would be considered to give a

competitive advantage and be kept proprietary.)

The net result is that whether there is success or -failure the

tendency is keep internal tools and aids proprietary.

In order to obtain some insight into what is actually happening at

Hewlett-Packard, a con-f i den t i al interview was conducted with Gopal Kapur

o-f Kapur and Associates who specializes in so-ftware productivity

improvement consulting. Mr. Kapur has conducted seminars at HP, and

Kapur and Associates has developed a li-fe cycle and project management

system (Kapur Method/2000) which is being used by some o-f their clients,

and which is currently beginning to be marketed commer i c i al 1 y

.

Mr. Kapur gave us the -following in-formation concerning HP productivity

improvement e-f-forts.

HP has a proprietary development environment called HP Li-fe Cycle

which is a li-fe cycle and project management methodology, and

-28-

includes an integrated work bench. There are two versions o-f HP

Life Cycle, one for engineering and one -for internal HP business

app 1 i cat i ons

.

Mr. Kapur stated that it is not HPs management style to en-force use

o-f these tools, or to impose what he views as necessary discipline

in the systems development process.

He has observed a general reluctance to talk about the actual

experience with HP Li-fe Cycle, but his experience with speci-fic

projects (business applications) within HP would seem to demonstrate

that significant progress in such areas as specification

preparation, structured walkthroughs, and test beds has not been

made

.

He stated that both software engineering and data processing

management regularly attend his seminars, and it is obvious that

they recognize the need for improvement in the application of HP

Life Cycle if not its technical and functional content.

o It is INPUTs opinion that HP is probably representative of the larger

computer manufacturers - they have provided tools, but except for

documentation, individual projects are permitted a great deal of

flexibility in whether, or how, such tools are employed. Kapur concurs

in INPUTs assessment that particular tools are not really so important as

how they are applied, and the general physical and management environment

in which they are applied. (For example, Kapur and Associates has

adopted a policy of only answering telephone calls between 1:00 and 4:00

PM and feels this improves their own internal productivity as much as

employing any specific methodology.)

-2?- INPUT

C. Tektronix. Memorex Communications, CXI

o In order to get a general -feel -for how smaller companies approach

productivity improvement, INPUT conducted a confidential interview with

Warren Davidson who has served as Project Manager with Tecktronix,

Manager o-f Technical Services with Memorex Communications Group, and is

currently Manager o-f So-ftware Services with CXI, Inc. (Micro-main-frame

products). In all o-f his positions, Mr. Davidson has been responsible

for control and release o-f so-ftware and per-formance measurement, and has

been instrumental in attempting to establish Project Management and

Control Systems.

o Mr. Davidson's general analysis is that so-ftware development teams

normally pre-fer to develop their own development tools (or tailor others

to suit their particular purposes), resist -formal project management and

control systems (or consider it an overhead exercise and do the minimum

they can to comply), and work in collusion with marketing (and customers)

to -force products through the release process.

o It is his impression that systems software development (embedded

communications systems, operating systems, etc.) is much more difficult

to control than commercial applications development because systems

programmers and engineers do not respect anyone without their detailed

technical knowledge of their systems (and this extends to management as

it gets removed from the day-to-day technical problems). It is difficult

for anyone (quality control or line management) to impose project control

on implementors of complex systems because the project leaders always

fall back on the question of who is going to be responsible for the

schedule. (Mr. Davidson stated: "the time when you really have to watch

-30-

INPUT

out is when they agree to run their projects by your rules - then you

Know they are going to blame any problems on you.)

o The result has been that effective project management and control systems

are extremely difficult to install - for example, one does not currently

exist at CXI and there is little hope of getting one installed despite

the fact that the President of the company specifically hired Mr.

Davidson to do just that. As he so aptly puts it: "When you don't know

what is going on, you obviously can't measure it; if you can't measure it

you can't control it; and if you can't control it, it is ridiculous to

talk about improving productivity. We have problems."

o In his previous assignments, Mr. Davidson had succeeded in installing an

"automated" software testing system (basically a custom VTAM simulator)

which feed data into a project control and product performance evaluation

system. However, the simulator was developed by an outside firm and the

reporting systems were developed in house and were considered

propr i etary

.

D. Dialogic Systems. Inc.

o Dialogic has developed a Development Center WorkBench which is based on

IBMs Interactive System Productivity Facility <ISPF) and is designed to

off-load COBOL development activities from IBM mainframes. The cost of

less than $3,000 per user is a substantial reduction from the costs

associated with interactive development using IBM mainframes, and

improved development tools are reported to provide over a 20'/.

productivity improvement compared to those on IBM mainframes. The

Development Center WorkBench can be used either locally (directly

-31-

INPUT

connected to the Block Multiplexor channel or connected remotely over

multiple communication lines.

However, INPUTs interest was in determining how the Development Center

WorkBench itsel-f was developed -for the DIALOGIC/10 MidFrame computer

which consists o-f multiple -functional processors (up to 31 Motorola 68000

microprocessors) operating in parallel. These high performance embedded

microprocessors are as -follows:

Host communications processor.

Remote terminal processor.

Local terminal processor.

Diagnostic processor.

Multiple application processors.

Multiple -file processors.

It is our understanding, based upon a telephone interview, that the

original development work -for the Development Center WorkBench

(approximately 250 man years o-f e-f-fort) was done in C Basic and Pascal on

a VAX supermini under UNIX, bu t the enhancement and maintenance

activities (which have been estimated to require another 250 man years)

are being done on the WorkBench itseW. I-f, in -fact, this bootstrapping

has occurred it would indicate language and target processor capability

which could potentially be very attractive -for developing high

per-formance applications in an SNA network environment. Unfortunately,

the scope of this study did not permit us to substantiate: 1) whether the

-32-

INPUT

Development Center WorkBench is really being used -for its own enhancement

and maintenance, 2) exactly what the $3,000 per user cost -figure

contains, or 3) whether there is any plan for marketing another version

of the WorkBench specifically aimed at distributed architectures.

E. Other Interviews

o As mentioned earlier in this report, it was decided to review brie-fly the

status of So-ftware Engineering Economics (as presented by Barry W. Boehm

in his book on the subject), In-formation Engineering <as originally

presented by James Martin and Clive F i nk 1 este i n) , and Queuing Networks

(as pursued by Dr. Ralph L. Disney). The reasons -for INPUTs interest in

these three areas will become apparent when our conclusions and

recommendat i ons are presented. Brie-fly stated, the current status of the

three areas are as follows:

While INPUT still feels that Mr. Boehm's book has made a substantial

contribution to the metrics of software development, and could serve

as the basis for workable models for project estimating,

productivity (performance) measurement, and project control; there

are some problems with the practical application of much of his

knowl edge

.

Mr. Boehm as Director of Software Research and Technology at

TRW, Inc. is concerned primarily with government contracts in

aerospace and defense. Detailed analysis of the specific

success or failure is difficult because the specific tools are

considered proprietary, and the projects are classified.

-33-

INPUT

A con-f i dent i al interview with the TRW credit operation

disclosed that Mr. Boehrn's work was economically justified only

on government projects with stringent quality control

requirements. (TRW estimates that quality assurance using SDM

70 adds 15X to development costs on commercial projects even

a-fter the documentation required is reduced substantially.)

Mr. Martin and Mr. Finklestein came to a parting of the ways shortly

a-fter writing their book on Information Engineering. The problem

seemed to revolve around the practical application of Information

Engineering and what the term really meant. Since then Mr. Martin

has become associated with DDI, and it appears that the product is

being used to define the concept. One thing becomes clear -

Information Engineering is not a science, and the term has even less

meaning than Fourth Generation Languages (another ill-defined term

from the fertile mind of Mr. Martin).

Dr. Disney has specialized in Queuing Networks for over 25 years,

and gradually this Operations Research tool has become accepted by

computer scientists as being of considerable assistance in complex

computer scheduling and resource allocation problems. Essentially,

much to the consternation of some mathematicians, Queuing Networks

have been remarkably accurate in predicting device utilizations and

throughputs (errors seldom exceed 5'0
;

and, while less reliable as

predictors of queue length and waiting time, error rates usually

less than 25X. The author of this study has consulted with Dr.

Disney over the years, and there are particular reasons to be

concerned about Queuing Networks at this time:

-34-

INPUT

Hierarchical computer/communications networks with systems

<and data) distributed over main-frames, minicomputers, and

microprocessors present resource allocation problems which are

substantially more complex than any encountered by operating

systems on central processors.

It has long been the authors intuitive belie-f that the

organization of large so-ftware development projects and the

attendant communications <data and information -flow) problems

are amenable to Queuing Network modeling; and, this intuitive

feeling even stronger as project teams go on-line with advanced

software development tools.

Dr. Disney agrees that Queuing Networks are promising -for the

more complex distributed systems which are currently being

developed; he stated: "everyone seems to use the term 'robust'

these days, and I guess Queuing Networks are robust."

He was not prepared to comment about software development work

units, but he was sufficiently interested to schedule an April

meeting with us in Palo Alto.

INPUT has also stated that APL might provide the necessary me ta-1 anguage

for concise communication across systems interfaces. Ule conducted a

confidential interview with an IBM employee who has been associated with

APL since its beginning in the IBM Research Center in Yorktown Heights.

Not surprisingly, he agrees with our assessment of the potential of APL,

and he stated that recent releases have provided enhanced capability

which would facilitate reliable "foreign language" execution across

-35-

INPUT

systems inter-faces. However, the battle within IBM concerning APL

continues unabated a-fter more than 20 years.

-36-

INPUT

IU. Conclusions and Recommendations

A. Conclusions

o The speci-fic conclusions reached -from this study are as -follows:

There are no general all encompassing solutions to the productivity

improvement problem - no one tool or set o-f tools is available which

are either acceptable o-f workable in all situations.

Major computer manu-f ac turers and systems developers are inclined to

develop their own set o-f tools <or heavily modi-fy those which are

commercially available), and attempt to standardize on the use o-f

those tools -for purposes o-f project management and quality control.

There is little reason to believe that these e-f-forts have been

e-f-fective in either producing clearly demonstratabl e productivity

improvement or in standardizing the way so-ftware is developed or

managed

.

Smaller companies (with smaller work units) are especially resistant

to the imposition o-f methodologies which address the li-fe cycle

because o-f increased paperwork. There is still the classic tendency

to rush into programming with inadequate requirements,

spec i -f i cat i ons ,
analysis and design; and programmers continue to

resist documentation. There is also a general -feeling that highly

productive individuals and work units should not be disturbed -for

fear that productivity will be adversely impacted (which may be

true) .

Generally speaking, there seems to be concensus that tools should

address the li-fe cycle and that some type o-f integrated software

" 37" INPUT

development work bench with ready access to centralized, on-line

documentation is required. (Massive volumes of paper documentation

is a sure sign o-f a project which is in trouble.)

It is generally -felt that systems complexity is increasing more

rapidly than any efforts to improve productivity, but this

especially difficult to quantify because there are no accepted

metrics or agreement on what contitutes software productivity.

Despite changes in terminology (such as software engineering),

software development remains a relatively undisciplined art rather

than a science. Twenty years ago, computer architects (such as Dr.

Fred Brooks and Dr. Gene Amdahl) felt that engineering discipline

could be applied to the software development process - to date,

there has been very little progress in doing this.

Past experience has shown that success or failure of software

projects seems to depend more on "good management" rather than the

application of particular tools, methodologies, or formal approaches

to productivity improvement. Unfortunately, there does not seem to

be any clear indication of what consitutes "good management" of

software development. It is possible to isolate vastly different

management "styles" which seem to have contributed to both

spectacular successes and failures in software projects.

o INPUT is convinced that the productivity pyramid (Exhibit II. 1) forms a

general basis for the management of software projects and for the

improvement of productivity. We are also convinced that productivity

must be viewed at four performance levels:

-38-

INPUT

Hardware-software

Human-machine dyad

Work un i t

Institutional

o When viewed in this manner, several additional conclusions can be

reached

:

There is tendency to believe that hardware costs are decreasing so

rapidly that sloppy software can be tolerated and overcome by

processing power. INPUT believes that commitment to quality extends

to hardware-so-f tware performance and that "quick and dirty"

solutions (including tools which create hardware performance

problems) are counter productive.

Most attention at the human-machine dyad has been addressed to

making the human more productive. In the United States this has

taken the form assuming that English is an appropriate human-machine

interface. INPUT does not agree with this assumption and feels that

unrestrained endorsement of English language tools will be counter

productive. E. W. Dijstra has expressed the feeling that English

tends to obscure the very power of the computer, and our current

research on APL elicited the same reaction - "Everyone complains

about all of the symbols in APL, but there are many problem

solutions which can't be descibed in English." In addition, human

capabilities vary so much that no single man-machine interface is

best in all cases.

-39-
INPUT

At the work unit, there has long been a general awareness that

adding more people does not normally improve schedules, and large

work units are not as productive as small work units. Despite this

awareness, there has been a general tendency to add personnel to

both the development work units, and "in support" of the work unit.

There is every indication adding more people and making those o-f

lower ability "more productive" tends to lower work unit performance

substantially. During the course o-f research -for this study, Gopal

Kapur stated he has a guaranteed way o-f improving software

productivity at least 507. - he challenges his clients to remove the

least productive 50'/. o-f their employees, and he agrees that the last

thing which should be done is to improve the productivity o-f poor

performers (because their work is really counter-productive to work

un i t performance)

.

Institutional performance can only be improved by having end user

involvement and broadbased management. There is a general tendency

for various work units to shift responsibility to others. For

example, computer architects have been inclined to leave certain

problems to software in order to keep costs down. A classic case of

this was the decision not to provide indirect addressing in the IBM

System/360 architecture - there is no question that this was counter

productive from the point of view of both the corporation and its

customers. (The current trend towards RISC machines is especially

susceptible to these types of counter-productive trade-offs, and

must be carefully managed with institutional performance in mind.)

-40-

INPUT

The analysis of the Ford Aerospace experience with productivity

inmprovement provided the -following list o-f reasons that so-ftware

development is so di-f-ficult:

Incomplete or inaccurate software requ i remen ts . < 1

)

Incomplete or inaccurate inter-face de-f i n i t i on . (2)

Trying to -fit too much in a given memory space. (3)

Trying to do too much computing in too little processing time. (4)

Trying to do too many things simultaneously inside a single

compu ter . < 5)

Internal con-flict -for resources. (6)

Queuing. <7)

Too many types and/or numbers o-f inter-faces with outside

hardware . (8)

Error detection and correct i on . (9)

Documentat ion . (10)

This list can then be classified as follows:

Items 1 and 2 are familiar project management and systems

engineering problems which have been discussed in terms of the

product i v i ty pyrarni d

.

Items 3 through 7 are concerned with software system architecture

and all represent parts of the same problem - todays software

-41-
INPUT

architectures were -fundamentally designed -for another technological

era. Perhaps no where is this more evident than in IBMs Systems

Network Architecture with its heavy emphasis upon large host

main-frames with multiple levels o-f operating systems overhead. It

is -felt that advances in microprocessor technology and economics

make this problem amenable to solution. (Fundamentally, this

demonstrates the importance o-f the hardware-so-f tware performance

level - housekeeping and overhead consume so much o-f the systems

resources that they are not applied to solving the problem at hand.)

Item 8 can clearly be demonstrated at all levels in the processing

hierarchy, but the problem is particularly acute in o-f-fice

automation (local area networks) where diverse devices must be

accommodated and new technology, such as optical memories, must

inter-face with obsolete systems software (both operating systems and

data base management systems). Once again the problems listed in 3

through 7 become apparent and there is great risk that performance

at the hardware-software level will result in the development of

unworkable systems where response times become unacceptable.

Standards are a possible solution in this area, but IBMs dominance

of the US computer industry permits the establishment of de facto

standards and virtual control over most industry standards activity.

(For example, it is impossible to establish standards for optical

storage devices before IBM embraces the technology.)

The complexity of shared software architectures (in the current

environment, the VM/MVS/UNIX strategy of IBM, under the SNA

architecture, establishes levels of complexity which threaten to

-42-
INPUT

extend down to the microprocessor level) make error detection and

correction (Item 9) extremely di-f-ficult and this in turn has obvious

quality and productivity impacts. Testing and integration in an

environment dictated by IBM will become increasingly di-f-ficult, and

the general tendency to be IBM compatible will turn out to be a

vicious trap.

Ford Aerospace describes documentation (Item 10) as a "massive,

costly, and time -consuming element of so-ftware development" which

is presently overdone and "is used mostly to convince semiskilled

project managers and customers that the so-ftware is going together

properly and addressing all the system requirements."

o INPUT concludes that much of our past analysis o-f the productivity

problem is being con-firmed -for all types o-f systems development projects.

It is an extremely complex problem which will not be solved by any

magical tool which places the emphasis on generating code and getting

fast results. As the environment becomes more complex there is no less

need -for tools to -facilitate program development and more need -for tools

to analyse data and in-formation -flow.

o The -final conclusion is that the scope o-f this study did not permit

su-f-ficient analysis o-f any specific productivity tools being employed by

computer manufacturers or those available from commercial vendors.

However, it is our opinion that most will work if employed after assuring

the base of the productivity pyramid is in place, but none will improve

product i v i ty wi thout that foundation.

B. Recommendations

-43-

INPUT

It is not recommended that Toshiba attempt to adapt the productivity

programs and/or tools o-f other vendors to its own use. There is no

indication that any o-f these tools have achieved dramatic improvements in

productivity. The problem is too complex for simple solution and undue

emphasis upon tools can be a distraction -for establishing a comprehensive

productivity improvement program.

However, we do recommend that Programmer Work Benchs and the latest

developments in Life Cycle and Project Management Methodologies be

explored i -f you have not already done so. While INPUT does not endorse

any products, both the Kapur Method/2000 and the Dialogic Development

Center WorkBench were both o-f sufficient interest to warrant additional

analysis, and Maestro (developed by Softlab GmbH and implemented on

Four-Phase Systems hardware) has provided a general programming

environment which has been been commercially available for sometime.

Addresses for marketing outlets here in the United States are provided in

Append i x A

.

INPUT obviously endorses the work it has done (and is doing) in

productivity improvement. Specifically, we believe the following:

It is necessary to understand IBMs software directions because, for

better or for worse, IBM is creating the systems software

environment within which other software systems must be integrated.

Of particular importance are SNA, Operating Systems, and Data Base

Management Systems. All of these areas have been explored in

detail, in past INPUT reports, and this year special emphasis is

being given to Operating Systems at all levels in the processing

h i erarchy

.

-44-

We believe that integration of multiple languages, operating

systems, and data bases systems is inevitable and there is a

tremendrous need -for a power-ful me ta-1 anguage(s) -for concise

communication across hardware-software systems, program modules,

user languages, and data base management systems. It is strongly

recommended that APL be considered as a possible tool -for this

purpose

.

We also believe that performance at the hardware-so-f tware level is

becoming and increasing critical issue, and it is not possible to

depend on advances in computer technology to compensate -for the

increasingly complex systems which are being developed. It is well

known that there are limits on computer processing power, regardless

o-f cost, and that o-f these limitations can be exceeded by many o-f

the algorithms o-f both artificial intelligence and operations

research. There is great need to be able to predict, monitor and

control hardware-so-f tware performance if these limits are not

to be exceeded (and unworkable systems developed).

It is necessary to become familiar with the tools of AI and OR as

both possible solutions to the productivity problem and as

potentially being part of the problem. We strongly recommend those

responsible for complex software development become familiar with

such important subjects as Game Theory, Information Theory,

Decision Theory, and Queuing Networks etc. before proceeding with

the development of Decision Support and Expert Systems which may

fail with disastrous and even catastrophic consequences.

-45-
INPUT

o In summary, we recommend that the productivity pyramid be understood and

used as the -foundation -for the development of a productivity improvement

program, and that the effectiveness o-f any productivity improvement

program be measured against the -four performance levels established in

this report (hardware-software, human-machine dyad, work unit, and

i nst i tu t i onal

)

-46-

INPUT

