INPUT

PROGRESS TOWARDS A STANDARDIZED EDI PROTOCOL IN EUROPE AND NORTH AMERICA

For

NTT

FINAL REPORT

PROGRESS TOWARDS A STANDARDIZED EDI PROTOCOL IN EUROPE AND NORTH AMERICA

Table of Contents December 21, 1991

- I. Introduction
- II. Executive Summary
- III. Research Findings Status of Protocols
 - A. Current Status of Protocols (Table 1 & 1a)
 - B. Future Trends of Protocols (Table 2, 2a & 2b)
- IV. Research Findings Evaluation of Protocols
 - A. MHS and FTAM comparison
 - B. Evaluations

EDI Service Vendors (Table 3)

EDI Standards Associations (Table 4)

Computer Vendors (Table 5)

- V. Research Findings OSI Protocol Diagrams & Protocol Usage Ranking
- VI. Case Studies
 - A. Electronic Data Systems
 - B. Illinois Department of Revenue
- VII. Conclusions

Appendices

- A Questionnaire 1
- B Questionnaire 2
- C Ouestionnaire 3
- D Terms

I INTRODUCTION

A Purpose and Scope

The purpose of this study is to provide a comprehensive review of the evolutionary progress of standardized EDI protocols in Europe and North America. Special attention has been given to MHS Message Handling System (MHS) and File Transfer Access Management (FTAM) protocols.

B Methodology

Research for this report included multiple telephonic interviews and a review of recently published data on the EDI protocol subject.

The companies interviewed for this report are:

- AT&T (ATT)
- MCI
- US Sprint (USS)
- BT/North America (BTNA)
- BT/United Kingdom (BTUK)
- GE Information Services (GEIS)
- Sterling Software (SSW)
- Telecom Canada (TCC)
- Transpac (France) (TPF)
- DBP Telekom Germany (DBP)

Each of these companies agreed to provide the information contained in this report with the understanding that it would be used by INPUT and its clients on a confidential basis. The information is provided to NTT for their explicit use.

The questionnaires used for this research were prepared based on the NTT specification dated August, 1991. Copies of the questionnaires were provided to NTT for review prior to the interview process. They are included in the appendix to this report.

2

A STEEL BOOKING

to a constitution of the c

C Report Organization

Following the Introduction, the report is comprised of six sections and generally complies with the organizational model provided by NTT in their project specification dated August, 1991. The table of contents follows the specification.

In keeping with that model, much of the report has been compiled in tabular format. Where appropriate the question(s) used to obtain the information are presented prior to the findings in *italics*.

YWNPR-1

II EXECUTIVE SUMMARY

Most service vendors continue to use standard transfer protocols such as Async and Bisync, etc. These protocols will continue to prevail over the next 5 years to meet customer demand.

A majority of the carrier respondents offer MHS and believe there is a growing interest in the MHS X.400/X.435 protocols. None of the service vendors offer FTAM and many are not even aware of this file transfer protocol. Also, all service vendors are interconnected with each other using various protocol arrangements.

Planned expansion efforts of X.400 is defined well into 1992 and will be driven by customer demand. By comparison, only 2 service vendors will implement FTAM in late 1992 and, again, will let the customer define its necessity.

Over the long term, all service vendors will continue to support all major EDI formats including EDIFACT, ANSI X12, TDCC, etc.

Surveys comparing MHS to FTAM were conducted with EDI service vendors, EDI standards associations, and computer vendors. Each group reported unanimous preference for the MHS protocol over FTAM.

Relatively few users appear to have MHS capability at this time. Neither of the two case study organizations, Electronic Data Systems (the data processing subsidiary for General Motors) nor Illinois Department of Revenue (the government tax collection agency for the State of Illinois), use MHS protocol nor do they have any implementation plans.

Observations:

- · The user market for MHS protocol is just beginning to emerge.
- · Service and computer vendors are aware of this emerging demand are initiating efforts to implement MHS capabilities.
- · Numerous factors indicate that MHS will ultimately be the EDI protocol standard of choice. FTAM appears to be considered less capable and is not as well known.
- The use of the many existing standard and proprietary protocols will continue to be consider more widespread than MHS for at least the next 5 years.

YWNPR-1 4

WHEN THE STREET

III Research Findings - Status of Protocols

A Current Status of Protocols (Table 1 & 1a)

Table 1 and 1a present a summary of the findings for **current** status of transfer protocols for each EDI service vendor surveyed. The format of the table is based on that provided in the project specification. The information presented in these tables is drawn from questions in Section I of Questionnaire 1 in the appendix of this report.

Please see Tables 1 and 1a on the following pages.

Table 1.

Current Status of Transfer Protocols Offered by EDI Service Vendors

Vendors	Transfer Protocols 1	Reason for Offer	Problems	Evaluation	# of Users
AT&T	Bisync SDLC X.25 Async X.400 Proprietary	Meet customer Bisync thru VAN has no end-to-end ACK		Each prot. needed Bisync next 20 yrs	No comment
MCI	Bisync SDLC X.25 Async	Customer demand	Info. unavailable	Emphasis on X.400 MHS	No comment
US Sprint	Bisync SDLC X.25 Async X.400	Variety of options offered to clients	No ACK from Bisync Dial-a- dump	No assessment	MacDonalds US Sprint
BT N. Amer.	T. Bisync SDLC X.25 Async Custome X.400 UCS		Nothing significant	Async is worldwide Merge Bisync & X.25	80% Bisync 20% Async/X.25
BT U.K.	Bisync SDLC X.25 Async X.400	Customer driven	Still in start-up mode	Grow to X.435 & sup- port existing prots	37: Bisync 18: X.25 19: Async
GE Info. Svcs.	Bisync SDLC X.25 Async X.400 ODETTE	Meet market needs	Need better under- standing of X.400	Async strongest Bisync to SDLC/X.400	5K: Async 4K: Bisync 200: X.400
Ster. Softwr.	Bisync SDLC X.25 Async ANSI-Clear	Meet customer needs	X.25 corrects Async conversion problems	All prot req. now X.400 eventually	1.5K:Async 1.5K: Bisync 900: X.25
Telcom Can.	Bisync X.25 Async X.400	Variety of options offered to clients	Disco Bisync end 92 High overhead Xmodm	X.25 preferred prot Cust. int. Xmodem	150: X.25 120: Bisync 90: Async
Transpac Fr.	Bisync X.25 Async X.400 ODETTE X.28 X.32	Company strategy	No problems	EDIFACT being modified too much	100: X.25 50: proprietary
Dbp Tlcm Ger.	X.400	No response	No response	No assessment	No response

Table 1a.

Current Status of Transfer Protocols Offered by EDI Service Vendors

Vendors	MHS Used?	Customers	Network Vendors	Network Vendors FTAM Used?		Interconnect Network
AT&T	84 P0,1,2	Yes-Specific	Yes-Specific No market		All major proto∞ls	Yes-All of them
MCI	84 P0,1,2	Yes-General	Yes-General	Unknown	All protocols	Yes-Via X.400
US SPRINT	84 P2	Yes-Specific	No	No Not offered		Yes-All of them
BT N. Amer.	84 P2	Yes-Specific	Yes-Specific	Not offered	All X12 proto∞ls	Yes-About 12 to 20 connections
BT U. K.	84 P2	Yes-Specific	No	Not offered Use ODETTE	EDIFACT, TRADACOM, ODETTE, ANSI X12	Yes-All of them
GE Info. Svcs.	84 P0,1	Yes-General	No	Not offered	X12, EDIFACT, TDCC, AIAG, VICS, TRADACOM	Yes-19 networks
Ster. Softwr.	Not Offered	N/A	N/A	Not offered	X12, EDIFACT, TDCC, WICS, ORDERNET, UCS	Yes-17 networks
Telecom Can.	84 P0	Yes-General	Yes-Specific	Not offered	All including WINS	Yes -6 networks
Transpac FR.	84 P2	Yes-General	Yes-Specific	Not offered Use ODETTE	EDIFACT, only	Yes-12 networks via Infonet
Dbp Tlcm Ger.	84 P1,2	Yes-General	No	Not offered	No response	No

B Future Trends of Protocols (Table 2, 2a & 2b)

Table 2, 2a, and 2b present a summary of the findings for the **future** status of transfer protocols used by each EDI service vendor surveyed. The format of the table is based on that provided in the project specification. The information presented in these tables is drawn from questions in Section II of Questionnaire 1 in the appendix of this report.

Please see Tables 2, 2a, and 2b on the following pages.

Table 2.

Future Trends of Transfer Protocols Offered by EDI Service Vendors

Vendors	Transfer Protocols	Schedule To Offer	Reason for Offer
AT&T	X.435 Driven by customer demand	No comment	Ratified official EDI X.400 standard
MCI	X.400 Plus others to meet customer demand	3 to 6 months	Strategic direction
US SPRINT	X.435 & Mailbag for ANSI X12 users	X.435 late '92 Mail 1st Qtr '92	Customer service enhancements
BT N. Amer.	X.400, X.25 & SNA SNA/OSI robust	X.400 & SNA	Large SNA base
BT U. K.	X.400	Early 1992 for Beta test	Use Frame Relay to speed up transfer
GE Info Svcs.	Offer many protocols FTAM (?) & CICS	Next 5 years FTAM & CICS- 1 to 2 years	Customer demand
Ster. Softwr.	X.400 & Mailbag	X.400 due mid '92 Mail due Jan '92	Industry trend towards X.400
Telecom Can.	SNA for IBM users	3rd Qtr '92	Customer demand & Phase out Bisync
Transpac Fr.	X.400 with '92 P7	Early '93	Proprietary now P7 intl. standard
Dbp Tlcm Ger.	X.435	2nd half '92	On request of many customers

Table 2a.

Future Trends of Transfer Protocols Offered by EDI Service Vendors—MHS Plans

Vendors	MHS Planned? Scheduled?	Future MHS Use*	Customers Using MHS	Inter connect Network Vendors using MHS
AT&T	Yes-Offered now	88 P0,1,2	Yes-Specific	Yes -Specific
MCI	Yes-Already offered	88 P0,1,2,7	Yes-General	Yes-General
US SPRINT	Yes-Currently use	88 P0,1,2,3,7	Yes-General	Yes-General
BT N. Amer.	Yes-3rd Qtr '92	84 P2	Yes-Specific	Yes-Specific
BT U. K.	Yes-Early '92	84 P2	Yes-General	Yes-General
GE Info Svcs.	Yes-Already offered	88 P0,1	Yes-General	No
Ster. Softwr.	Yes-Mid '92	84 P1	Yes-Specific	Yes-Specific
Telecom Can.	Yes-Already offered	88 Not sure	Yes-General	Yes-General
Transpac Fr.	Yes-Already offered	92 P7	Yes-Specific	Yes-Specific
Dbp Tlcm Ger.	Yes-Already offered	88 P1,2	Yes-General	Yes-Unknown

^{*}Vendors responding with versions 88 or 92 represent upgrades from currently installed version 84.

10

Table 2b.

Future Trends of Transfer Protocols Offered by EDI Service Vendors

Vendors	Planning For FTAM?	Business Protocols	EDIFACT Plan?	Interconnect Network
AT&T	Unknown	All plus Mailbag	Will continue	Same standards used with customers
MCI	Yes-Available	All per customer demand	Will continue	X.400 plus customer demand
US SPRINT	Yes- No idea but project in queue	All provided now & ODETTE & TRADACOM	Will continue	Same as users
BT N. Amer.	Yes-To be determined	Same as now	Will continue	X.25,X.75,X.400 & Mailbag, TA3, ODETTE
BT U. K.	No	May use regional subsets of EDIFACT	Will continue	Use X.25 & ODETTE for FTP
GE Info. Serv.	No	No plans to add others	Will continue	X12, EDIFACT, TDCC, & AIAG Any public std
Ster. Softwr.	Yes-Late '92	Same as now	Will continue	Bisync, Mailbag, & a few MHS
Telecom Can.	No	SameEDIFACT may have X12 subsets	Will continue	Customer driven Will use whatever needed
Transpac Fr.	Yes-Not sure but ODETTE due Dec 91	Same as now	Will continue	Continue X.400 European strategy
Dbp Tlcm Ger.	Yes- 2nd half '92	EDIFACT	Will continue	SDLC 2780/3780

YWNPR-1

IV Research Findings - Evaluation of Protocols

This section of the report provides the results of asking a series of questions designed to compare the qualities of MHS and FTAM protocols of three types of entities: EDI services vendors, EDI standards associations, and computer vendors.

The questions used for this evaluation are based on the project specification and are found in Section III of Questionnaire 1 as well as Questionnaire 2.

A MHS and FTAM Comparison

The following provides a summary of the reasons MHS is recieving significant support within the U.S. while FTAM is not receiving active support.

Reasons why MHS is more acceptable:

- Many U.S. companies have already made a considerable investment in their E-mail systems that use X.400 MHS (store and forward protocol). Note many of these E-mail systems are interconnected internationally.
- · Much of this investment is in intra-company LAN systems.
- The X.400 standard allows different E-mail systems and LANS to communicate with each other.
- The X.435 standard is designed to combine EDI with E-mail messaging.
- This X.400/X.435 combination results in:
 - Minimized administrative costs and overhead
 - Simplified management of networks
 - User friendly environment
 - Improved secruity, audit and tracking features
- Message Handling System (MHS) was identified as being much more popular than FTAM as an E-mail/EDI protocol standard in this research. It must be noted that actual useage is modest but the investment is being made.

Reasons why FTAM is less acceptable:

· File Transfer Access Method (FTAM) is relatively unknown in general. Although most people in the EDI industry are aware of it, that awareness is only on a limited basis.

YWNPR-1 12

- EDI transactions have not typically required a real-time transmission. Although real-time EDI is expected to be a future requirement.
- · FTAM protocol would be used on a real-time basis to transfer large files point-to-point.
- FTAM incurred negative publicity during test trials due to significant performance overhead which resulted in poor throughput using short messages.
- FTAM is best utilized when handling large size messages with long disk access and multiple read/write operations in a single connection. These are not the normal charcteristics of E-mail and EDI transmissions.

INPUT would note the following in regard to the Case Studies of EDI Used by North American Telecommunications Carriers report.

• Under the full intent of the 811 standard FTAM may become a more appropriate protocol if the detail record information is to be transmited on-line.

B Evaluations

The individual evaluations follow.

- EDI Service Vendors (Table 3)
- · EDI Standards Associations (Table 4)
- · Computer Vendors (Table 5)

A comparison of the three evaluations is presented in the Chapter VII, Conclusions.

General Comments:

- The most diversity of opinion was expressed by the EDI Services Vendors, however this group favors MHS to a major degree.
- · Of the EDI Services Vendors, DBP (Germany) declined to make a comparison.
- · Of the EDI Standards Associations, EDIA declined to express opinions regarding the technical aspects of MHS and FTAM. EDIA did comment from a business perspective.

YWNPR-1 13

Table 3.

Evaluation of OSI Standard Transfer Protocols as Viewed by EDI Service Vendors

Vendors	Proto-	Public Reputation	Service Reliability	Public Familiarity	Vendor Offering (Status)	User Interface	Intercon- nection	Problems and Comments
AT&T	MHS FTAM	1 -	1 -	3 4	2 -	3	1 5	Not enough users of FTA to have a reputation
MCI	MHS FTAM	1	3	2	3	4	2	Not aware of how customers using FTAM
US SPR	MHS FTAM	1 4	1 3	3 3	4 4	3 3	1 2	No comments
BTNA	MHS FTAM	2	2	1 2	2 3	2 3	1 3	Limited data available on FTAM
BTUK	MHS FTAM	2 4	3 3	3 4	-	3 2	3 2	MHS is European solution ODETTE is answer to FTAM
GEIS	MHS FTAM	3 5	2 -	3 5	2 5	-	4 -	FTAM is not popular
SSW	MHS FTAM	5 5	2 2	5 5	4 3	2 1	3 2	Higher demand for EDI in Europe than in US
TCC	MHS FTAM	2	2	3	3	2	2	Limited EDI public awareness of MHS
TRSPAC	MHS FTAM	2 3	1	2 2	1 3	• •	1 3	FTAM used between a few big mainframe
DBP	MHS FTAM							Declined to make comparison Not using FTAM now

Scale: Good = 1, Bad = 5

Table 4.

Evaluation of OSI Standard Transfer Protocols as Viewed by EDI Standards Associations

Vendors	Proto-	Public Reputation	Service Reliability	Public Familiarity	Vendor Offering (Status)	User Interface	Intercon- nection	Problems and Comments
AIA	мнѕ	2	3	2	1	3	1	X.400 complex addressing Needs mature '88 version
	FTAM	2	2	1	4	1		FTAM simpler direct process Not user friendly
ANSI	MHS	2	1	2	1	2	1	Public not that aware of full benefits of X.400 &
	FTAM	3	3	5	3	4	2	FTAM Better interactive comparison is MHS to Remote Data Processing (RDP)
EDIA	MHS	-	-	-	-	-	•	Business oriented Can't provide technical info.
	FTAM	-	-	-	-	-	-	EDI stds. slow to arrive X.400 will ultimately be std. of choice FAX will cause delay of OSI plan

Scale: Good = 1, Bad = 5

Table 5.

Evaluation of OSI Standard Transfer Protocols as Viewed by Computer Vendors

Vendors	Proto- ∞I	Public Reputation	Service Reliability	Public Familiarity	Vendor Offering (Status)	User Interface	Intercon- nection	Problems and Comments
DEC	мнѕ	3	3	3	2	2	2	MHS more widely known
	FTAM	3	4	3	3	3	3	FTAM used in IBM world
HP	MHS	1	1	1	1	3	1	MHS adopted by carriers and has enterprise-wide potential
	FTAM	3	3	3	1	1	2	FTAM use with large file in batch mode User inter face is simpler than MHS
IBM	мнѕ	2	3	2	3	2	2	No comments
	FTAM	3	3	4	3	4	3	No comments

Scale: Good = 1, Bad = 5

V Research Findings - OSI Protocol Diagrams & Protocol Usage Ranking

This chapter contains the OSI standard protocol stacks (OSI basic reference model) and the usage ranking analysis as provided by each company surveyed.

Question: III-7a. Using the OSI Basic Reference Model, please diagram each of the top 3 to 5 transfer protocols you currently offer.

OSI Protocol Diagrams

ATT	OSI Ref. Model	Example 1	Example 2
	Application Presentation Session Transport Network Data Link Physical	X.400 X.226 X.225 X.224 X.25 HDLC I.430/I.431	3780 BISYNC RS232C
ATT	OSI Ref. Model	Example 3	Example 4
	Application Presentation Session Transport Network Data Link Physical	3780 SDLC RS232/V.35	MMP/XMODEM V.22 & v.22bis V.32 (9.6) FOR MMP
ATT	OSI Ref. Model	Example 5	
	Application Presentation Session Transport Network Data Link Physical	UUCP (UNIX) (similar to ASYNC XMODEM)	

MCI	OSI Ref. Model	Example 1	Example 2
	Application Presentation Session Transport Network Data Link Physical	X.400 X.226 X.225 X.224 X.25 HDLC I.430/I.431	3780 BISYNC RS232C
MCI	OSI Ref. Model	Example 3	Example 4
	Application Presentation Session Transport Network Data Link Physical	X.25 HDLC RS232C	SNA SDLC RS232C/V.35
MCI	OSI Ref. Model	Example 5	
	Application Presentation Session Transport Network Data Link Physical	MMP ASYNC KERMIT X/YMODEM V.22 & V.22BIS	
USS	OSI Ref. Model	Example 1	Example 2
	Application Presentation Session Transport Network Data Link Physical	X.400 X.226 X.225 X.224 X.25 HDLC I.430/I.431	3780 BISYNC RS232C

USS	OSI Ref. Model	Example 3	Example 4
	Application Presentation Session Transport Network	V 25	CNIA
	Data Link	X.25 HDLC	SNA SDLC
	Physical	RS232C	RS232C/V.35
USS	OSI Ref. Model	Example 5	
	Application Presentation Session Transport Network Data Link Physical	YMODEM ASYNC RS232C	
BTNA	OSI Ref. Model	Example 1	Example 2
	Application Presentation Session	X.400 X.226 X.225 X.224	
	Transport Network	X.224 X.25	2780/3780
	Data Link	HDLC	BISYNC
	Physical	I.430/I.431	RS232C
BTNA	OSI Ref. Model	Example 3	Example 4
	Application Presentation Session Transport		
	Network	X.25	MMP/X.PC
	Data Link	HDLC	ASYNC
	Physical	X.21/X.21 BIS	RS232C

.......

BTUK OSI Ref. Model	Example 3	Example 4
Application Presentation Session Transport Network Data Link Physical	X.25 HDLC X.21/X.21 BIS	MMP ASYNC RS232C
GEIS OSI Ref. Model	Example 1	Example 2
Application Presentation Session Transport Network Data Link Physical	X.400 X.226 X.225 X.224 X.25 HDLC I.430/I.431	2780/3780 BISYNC RS232C/V.32
GEIS OSI Ref. Model	Example 3	Example 4
Application Presentation Session Transport Network Data Link Physical	X.25 HDLC X.21/X.21 BIS	MMP/XMODEM/X.PC ASYNC RS232C/V.32
GEIS OSI Ref. Model	Example 5	
Application Presentation Session Transport Network Data Link Physical	3770/SNA SDLC V.32 & V.22 RS232C	

SSW	OSI Ref. Model	Example 1	Example 2
	Application Presentation Session Transport Network Data Link Physical	X.25 HDLC RS232C	2780/3780 BISYNC V.32 & 56KBPS
SSW	OSI Ref. Model	Example 3	Example 4
	Application Presentation Session Transport Network Data Link Physical	3770 SDLC X.21/X.21 BIS	MMP/XMODEM ASYNC V.32 & V.22
SSW	OSI Ref. Model	Example 5	
	Application Presentation Session Transport Network Data Link Physical	ANSI/CLEAR HAYES 212 V.32 & V.22 RS232C	
TCC	OSI Ref. Model	Example 1	Example 2
	Application Presentation Session Transport Network Data Link Physical	X.400 X.226 X.225 X.224 X.35 HDLC I.430/I.431	3780 BISYNC RS232C

CANADA .

TCC	OSI Ref. Model	Example 3	Example 4
	Application Presentation Session Transport Network Data Link Physical	X.25 HDLC RS232C	MMP/XMODEM ASYNC RS232C
TPF	OSI Ref. Model	Example 1	Example 2
	A 1'	Service Connection	37,400,104
	Application Presentation	ODETTE/FTP	X.400 '84 X.400 '84
	Session		BAS SUBSET
	Transport		CLASS O
	Network	X.25	X.25
	Data Link	LEP/B	LEP/B
	Physical	V SERIES MODEMS	V SERIES MODEMS
TPF	OSI Ref. Model	Example 3 Proprietary like X.400 (MHS) P7	Example 4
	Application	ATLAS 440	TELETEL MINITEL
	Presentation		
	Session		
	Transport Network	X.25	X.25
	Data Link	LEP/B	LEP/B
	Physical	V SERIES MODEMS	V SERIES MODEMS

Protocol Usage Ranking

The following table provides the ranking of the protocols based on usage and demand.

Question: III-7b. Please rank the top 3 to 5 protocols by percentage of highest to lowest usage/demand.

STANDARD PROTOCOL USAGE/DEMAND SUMMARY - HIGHEST TO LOWEST

Ranking 1st	Protocol Asynchronous
2nd	Bisynchronous
3rd	X.25
4th	Synchronous Data Link Control
5th	X.400
6th	All Others

Note: Proprietary protocols not included

Comments

· US EDI service vendors generally ranked Asynchronous as highest.

• TRANSPAC reported X.25 as the highest user.

· At this point, X.400 represents less than 1% of the usage.

VI Case Studies

Please note that the structure of these case studies follows the format of the questionnaire used (Questionnaire 3) in the interview process. The number by each of the statements in the case study report corresponds to the question in the survey. Also, each statement has been written to indicate the point of the question. The questionnaire (Questionnaire 3) is provided in Appendix C.

The Electronic Data Systems and Illinois Department of Revenue case studies meet the request for a review of two companies using the OSI standard transfer protocol.

A Electronic Data Systems (EDS)

EDS is now a General Motors company and provides all data processing for America's largest automotive manufacturer as well as numerous major manufacturing and services organizations throughout the U.S. and Europe. Approximately 50% of EDS's revenue comes from customers other than General Motors Corporation.

- 1a EDS interacts with more than 6 major EDI applications.
- 1b They have no plans to develop any EDI systems with new strategic partners on a pilot project basis.
- 1c The following information identifies EDS' top 5 applications, number of users per system, and some of its major user names.

	Application Name	# of Users	Major Users
GM's	MATERIALS MGMT (Proprietary format)	4,000	
GM's	PURCHASING	800	
GM's	RAIL CAR TRACKING (TDCC Format)	1	Railroad Association
GM's	BANK PAYMENT (Banking format)	5	Banks
	DIRECT DEPOSIT (Banking format)	100	Banks and Credit Unions
EDS'	ACCTS PAYABLE (Incoming invoice X12 format)	4	Internal to EDS

2a The following shows the primary computer and network vendors that support the applications noted above.

Application Name	Computer Vendor	Network Vendor
ALL	IBM OR comparable	Most Applications
Mainframe	-	first interface with
		the EDS Network

2b The protocols that support these applications are:

	Application Name	Network Vendor	Network Type*
GM's	MATERIALS MGMT	EDS	BISYNC 4.8 PSN
	(Proprietary format)		
GM's	PURCHASING	EDS	BISYNC 4.8 PSN
	(General Stores X12 format)		
GM's	RAIL CAR TRACKING (TDCC FORMAT)	EDS	BISYNC 4.8 P/L
GM's	BANK PAYMENT (Banking format)	EDS	BISYNC 4.8 PSN
GM's	DIRECT DEPOSIT (Banking format)	EDS	BISYNC 4.8 PSN
EDS'	ACCTS PAYABLE	IBM	SDLC 56KBPS
	(Incoming invoice X12 format)		

^{*} Network Type - communication protocol/data rate/network facility (PSN - public switched network, P/L - private line).

The top 3 applications by volume (All with GENERAL MOTORS) are:

- 1. MATERIALS MANAGEMENT
- 2. RAIL CAR TRACKING
- 3. PURCHASING
- 3a The following depicts the top 3 EDI application/network configurations including a simple diagram of the network design/layout and systems used

LOCAL ACCESS T3 BACKBONE SYSTEM

GM USER-----EDS RGNL========EDS HDQTRS
PSN @ 4.8KBPS REAL THRUPUT 256KBPS |

IBM 3745 &
MAINFRAME

3.b The top 3 currently supported transfer protocols are shown below using the OSI Basic Reference Model. Each application is referred to by EDS by the name "ELIT" which stands for Electronic Information Transfer.

EDS	OSI Ref. Model Application Presentation Session Transport	Example 1 ELIT(MAT'L MGMT)	Example 2 ELIT(RAIL CAR)
	Network	3780	3780
	Data Link	BISYNC	BISYNC
	Physical	V.27BIS 4.8	V.27 4.8
	OSI Ref. Model	Example 3 ELIT(PURCHASING)	
	Application	,	
	Presentation		
	Session		
	Transport	2550	
	Network Data Link	3770	
	Data Link	SDLC V 25 56V PPC	
	Physical	V.35 56KBPS	

- 4a MHS does not currently play a key role in the EDS environment. It is considered as something to be addressed in the future. EDS noted that government contracts are starting to include MHS as a requirement.
- 4b/c While MHS is not currently used, it is planned for use in 1992.
- 4d MHS would be more desirable if it became the envelope standard between networks, e.g., EDS and IBM or EDS and GEIS.
- 5a/b The EDS project leader is Dave Steinus (313) 370-1603. Please note that he is also on the committee to sponsor Mailbag.
- Some of the more significant problems they have encountered with EDI applications are:
 - · Mainly having to do with interconnection with other networks via bisync
 - Loose security with dial-a-dump. Mailbag may help this situation
- There were no other vendors who participated in the development of the application. The ELIT (Electronic Information Transfer) product was first developed internally in 1975. But, the translation software was purchased from RMS.

- 8 As additional comments, EDS is:

 - currently converting to X12
 plans to retain bisync
 can meet client requirements for X.25 when requested

27

B Illinois Department of Revenue (IDR)

The Illinois Department of Revenue is the state agency responsible for all state tax collections within the state of Illinois.

- 1.a IDR has no EDI applications in place although several are under development.
- 1.b IDR currently has 2 active pilot projects and 1 in the planning stages.
- 1.c Here are the top 5 applications, number of users per system, and some of the major user names.

Application Name	# of Users	Major Users
In Development		
FEDERAL/STATE INFO EXCHANG	GE A Expect 5	IDR & IRS
FEDERAL/STATE INFO EXCHANG		IDR & IRS
Planned	•	
ELECTRONIC FILING OF	Goal of	Tax Payers &
BUSINESS TAXES	100,000	Collection
(The following standards are	,	Agencies
being developed: 813,151,820,		O
997,824,831,& 838)		

2.a Primary computer and network vendors that support the IDR applications noted above are:

Application Name INFORMATION EXCHANGE A & B	Computer Vendor COMPAQ 386 PC'S, NOVELL LAN, & SUPPLY TECH'S STX 12 Software	Network Vendor PSN
ELECTRONIC FILING (Proprietary) ELECTRONIC FILING (via EDI)	SAME AS ABOVE BUT IN-HOUSE SOFTWARE PC NETWORK BASED	PSN To be defined

2.b The types of protocols that support these applications vary and are subject to network vendors and those users wishing to interface with the IDR. It can be expected that IDR will use multiple networks and protocols (through services vendors) to reach the diverse audience of tax payers and collection agencies..

3a The following depicts the top 3 EDI application/network configurations including a simple diagram of the network design/layout and systems used.

NETWORK CONFIGURATION for ELECTRONIC FILING SYSTEM

REMOTE	LOCAL & DEMOTE ACCION	SPRINGFIELD, IL	
USERS/	LOCAL & REMOTE ACCESS	_IL DEPT OF REVENUE	
CLIENTS			
	PSN @ 1.2/2.4KBPS VIA XMODEM		
	PSN @ 4.8KBPS VIA BISYNC, OR		
	PSN @ 9.6KBPS VIA BISYNC		
		ONE OF 3 MODEM TYPES	
		NOVELL LAN	
		COMPAQ 386 PC'S	

3b The top 3 currently supported transfer protocols are noted below through the use of the OSI Basic Reference Model.

IDR	Application Presentation Session Transport	Example 1 ELECT FILING ANSI X12	Example 2 INFO EXCHANGE A & B
	Network	UNDER	PROCOM/KERMIT/ X & Z MODEM
	Data Link Physical	DEVELOPMENT	ASYNC V.32BIS/V.42BIS/V.42
IDR	OSI Ref. Model ELECT FILING Application Presentation Session Transport	Example 3A SYSTEM 1 IN HOUSE SOFTWARE	Example 3B SYSTEM 2 IN HOUSE SOFTWARE
	Network Data Link Physical	3780 BISYNC 208B MODEM (4.8	3780 BISYNC) V.32 (9.6)

IDR OSI Ref. Model Example 3C ELECT FILING SYSTEM 3

(Proprietary)

Application IN HOUSE Presentation SOFTWARE

Session Transport

Network XMODEM
Data Link ASYNC
Physical RS232C

4a MHS does not play any role in their environment.

- 4b/c While MHS is not currently used, it could play an indirect role through a VAN providing protocol conversion.
- 4d The desirability of MHS has not been determined.
- 5a The IDR project leader is Dan Cornwell (217) 785-8798
- Some of the more significant problems they have encountered with EDI applications are:
 - the business issues, e.g., rules and regulations for receive posting dates are more important than the technical issues.
 - the IDR has not placed priority on EDI application issues until the present time.
- There are no vendors involved in the development of their application other than the providers of software and hardware products. No service vendors have been used to date.
- 8 As additional comments, IDR noted:
 - up to 150,000 tax returns will be filed electronically in 1992 in Illinois with IDR.
 - the federal system did 7,000,000 electronic tax filings in 1991.
 - 10 states will start electronic filing in 1992.

X CONCLUSIONS

A Current Status of Transfer Protocols Offered by Service Vendors

- · Majority of service vendors use Async, Bisync, X.25, SDLC, and X.400
- · Protocols are offered to meet customer demand and to stay competitive
- · Few major problems--all being addressed
 - No acknowledgment using Bisync Dial-A-Dump through VAN
 - Need better understanding of X.400
- Evaluation assessment
 - All major transfer protocols will continue to prevail through the next five years
 - Interest is growing in X.400 and X.435
 - Bisync transitional to SDLC
- · Protocol usage by users
 - Users outside the US favor X.25 and Bisync
 - US users prefer Async and Bisync
- Majority of service vendors offer 1984 version of MHS
 - Most selected P2 type (E-mail through P1's transport protocol)
 - All use MHS with customers but divided on whether it is used with all or just specific customers
 - Most use MHS with specific network service vendors
- FTAM is not offered by any carrier
 - Limited awareness of this file transfer protocol
 - European service vendors use ODETTE in place of FTAM
- · All service vendors support all major EDI formats
 - ANSI X12, EDIFACT, TDCC
 - Including a variety of industry specific standards
- · All service vendors interconnected with each other

31

B Future Status of Transfer Protocols Offered by Service Vendors

- · All service vendors will offer X.400 transfer protocols
 - Some will offer X.435, Mailbag, and SDLC
 - One may offer FTAM and CICS
 - Most offerings will occur in mid to late 1992
- · It is apparent that customer demand is driving transfer protocol offerings
- · Growth in MHS may be slow
 - Due to low cost personal computer IBM solutions
 - Until X.435 standards and software are available
- · All service vendors will offer MHS
 - Most will support the 1988 version
 - Many still select the P2 type and several select P7
 - MHS will be used with customers on a general basis
 - Most will use MHS but are divided in whether it will be used generally or specifically with network service vendors
- · Over half of service vendors will offer FTAM
 - Implementation driven by market demand
 - No indication of diminished importance of ODETTE
 - Two service vendors plan to implement FTAM in late 1992
- · All service vendors will continue to support all major EDI formats
 - Customer demand continues to drive standards
 - EDIFACT may have ANSI X12 subsets--perhaps regional
 - No indication of diminished importance of industry specific standards
- EDIFACT will continue to be supported by all service vendors
- EDI service vendors will interconnect using:
 - All major standards
 - Same standards customers use

C Evaluation of Protocols Summary

1. EVALUATION OF PROTOCOLS BY EDI SERVICE VENDORS - SUMMARY RESULTS

	Rankings	
Survey Area	MHS	FTAM
Public reputation	2.1	4.2
Service reliability/quality	1.9	2.3
Public familiarity	2.8	3.6
Status of vendor offering	2.6	3.6
User interface	2.7	2.3
Interconnection	<u>2.0</u>	<u>2.8</u>
Average Ranking	2.35	3.13

Scale: 1 = Good thru 5 = Bad

Note: 9 respondents

2. PROTOCOL EVALUATION BY EDI STANDARDS ASSOCIATIONS - SUMMARY RESULTS

	Rankings	
Survey Area	MHS	FTAM
Public reputation	2.0	2.5
Service reliability/quality	2.0	3.0
Public familiarity	2.0	3.5
Status of vendor offering	1.0	2.0
User interface	2.5	4.0
Interconnection	<u>1.0</u>	<u>1.5</u>
Average Ranking	1.75	2.75

Scale: 1=Good thru 5=Bad

Note: 2 respondents

3. PROTOCOL EVALUATION BY COMPUTER VENDORS - SUMMARY RESULTS

	Rankings	
Survey Area	MHS	FTAM
Public reputation	2.0	3.0
Service reliability/quality	2.3	3.3
Public familiarity	2.0	3.3
Status of vendor offering	2.0	2.3
User interface	2.3	2.7
Interconnection	<u>1.7</u>	<u>2.7</u>
Average Ranking	2.05	2.88

Scale: 1=Good thru 5=Bad

Note: 3 respondents

D CASE STUDIES USING OSI STANDARD TRANSFER PROTOCOL

- Both Electronic Data Systems (the data processing arm of General Motors) and the Illinois Department of Revenue deal with extraordinary amounts of data.
- · Neither respondent has MHS nor do they have any MHS implementation plans.
- · Relatively few users appear to have MHS capability at this time (additional case studies would help define growth potentials).
- In contrast, the service vendors have created and are expanding their MHS capability in anticipation of real user demand.

34

Appendix A

Questionnaire 1

YWNPR-1

 $= x (\operatorname{bernyy} h)$

Questionnaire 1

Research Survey
Progress Towards a Standardized EDI Protocol in Europe and North America
October, 1991

Introductory remarks

My name is Marc Matheson. I am a Project Director for INPUT. We are a leading market research firm and are conducting a research study to evaluate the development of standard EDI protocols.

We are in the process of surveying principal EDI network service carriers, vendors, and standards associations who use/define standards for EDI systems. Your participation in this survey would provide the necessary information we need to determine industry trends.

In return for your participation, we will send you an executive summary of INPUT's annual assessment and forecast of the use of EDI in the U.S., entitled EDI MARKET 1991 - 1996, and a copy of our EDI newsletter.

The survey should take about 45 minutes to complete plus what ever time it may take to assemble system and network diagrams.

If this is acceptable, when would be a convenient time for us to c	all you?
	What is your fax
telephone number?	
Your cooperations is greatly appreciated. Thank you very much consideration.	for your time and

A-1

INPUT Research Survey Progress Towards a Standardized EDI Protocol in Europe and North America October, 1991

Current Status of Protocols

I.

Survey of principal EDI network carrier and services vendors

1.a.	What kinds of EDI transfer protocol interfaces are offered to your users and other service vendors, e.g., telephone, X.25, SNA, MHS, etc.
1.b.	Why are they offered?
2.	Are you experiencing any problems with these protocols? (Please note any weaknesses and why they do not perform as well.)
3.	What is your assessment of the EDI protocols you offer? (Please note the "why's behind your assessments)
4.	Please note the number of companies using each protocol and identify the larger users if possible.

YWNPR-1 A-2

5.	If you are offering MHS protocol:
a.	What version of MHS protocol is used'84 or '88? (Please circle)
b.	What type of protocol is usedP0, P1, P2, P3, or P7 ('88)? (Please circle)
c.	Is MHS protocol used with customers? Yes No
	If yes, is it used in general or only with specific customers?
	If specific, how many? %
d.	Is MHS protocol used with network services vendors? Yes No
	If yes, is it used in general or only with specific vendors?
	If specific, how many?%
6.	If you are offering FTAM protocol, what types of file options are usedType 1, 2, o 3? (Please circle)
7.	What industry standards (business protocols) do you support, e.g., ANSI X12, EDIFACT, TDCC, etc.?
8.	Do you interconnect with other EDI networks? Yes No If yes, please describe.

STANDARD TO SUMMER TO SERVE STANDARD

II. Future Trends of Protocols

1.a.	and other service vendors?
1.b.	Why are you planning to offer these?
2.	When is the scheduled role out for these offerings?
3.a.	Are you planning to use MHS protocol? Yes_ No_
3.b.	If yes, when would MHS be offered?
4.	If you are planning to offer MHS protocol:
a.	What version of MHS protocol will be used'84 or '88? (Please circle one)
b.	What type of protocol will be usedP0, P1, P2, P3, or P7 ('88)? (Please circle one)
C.	Will MHS protocol be used with customers? Yes No
	If yes, will it be used in general or only with specific customers?
	If specific, how many? %

Polymer' to absent entitled

The second second of the second secon

d.	Will MHS protocol be used with network services vendors? Yes No	
	If yes, will it be used in general or only with specific vendors?	
	If specific, how many? %	
5.a.	Are you planning to offer FTAM? Yes No	
5.b.	If yes, when would FTAM be offered?	
6.	What industry standards will be supported, e.g., ANSI X12, EDIFACT, TDCC, et	c.?
7.	If you are not planning to use EDIFACT, please note why?	
8.	What standards will you use if you interconnect with other vendors?	

III. Ranking of Protocols

To better understand how you would compare MHS to FTAM transfer protocols, please rank each category noted below on a one (Good) to five (Bad) basis: Also, please note any problems or comments associated with each category.

2.	Service reliability and quality	MHS	FTAM
3.	Public familiarity	MHS	FTAM
4.	Status of vendor offering	MHS	FTAM
5.	User interface	MHS	FTAM
6.	Interconnection	MHS	FTAM

7. Protocol diagrams

a. Using the OSI Basic Reference Model, please diagram each of the top 3 to 5 transfer protocols you currently offer.

Example A	Example B
X.25	MHS X. 226 X. 225 X. 224 X. 25
HDLC	HDLC
I.430/I.431	I.430/I.431
Example 1	Example 2
	X.25 HDLC I.430/I.431

OSI Ref. Model	Example 3	Example 4

Application
Presentation
Session
Transport
Network
Data Link
Physical

A-7

os	I Ref. Model	Example 5	
Pre Ses Tra Net Dat	plication esentation sion ansport twork ta Link vsical		
b.	Please rank these usage/demand.	top 3 to 5 protocols by p	percentage of highest to lowest
Pro	tocol Name	Rank	king by %
			_
			-
			- -
8.	Other comments		
-		-	<u></u>

× 2500 MM

Appendix B

Questionnaire 2

36

Questionnaire 2

Evaluation of OSI standard transfer protocols perceived by EDI standards associations (TDCC, EDIA, & ANSI), computer vendors, and EDI service vendors.

To better understand how you would compare MHS to FTAM transfer protocols, please rank each category noted below on a one (Good) to five (Bad) basis: Also, please note any problems or comments associated with each category.

1.	Public reputation/popularity	MHS	FTAM
			_
2.	Service reliability and quality	MHS	FTAM
3.	Public familiarity	MHS	FTAM
4.	Status of vendor offering	MHS	_ _ _FTAM
5.	User interface	MHS	FTAM
6.	Interconnection	MHS	
			_

B-1

Endured hout

2-4140

Appendix C

Questionnaire 3

37

Questionnaire 3

Questionnaire for	case studies	using OSI	standard	transfer	protocol,	identifying	trends
and perspectives.						, ,	

INP	UT is interested in evaluating	the following EDI trend areas	•		
1.a.	How many EDI applications does your organization currently interact with?				
1.b.	How many EDI systems are on a pilot project basis?		a new strategic partner		
1.c.	What are the names of the to are the names of some of the	op 5 applications, how many us major users on each of these?	•		
App	lication Name	% of Users	Major Users		
2.a.	Please note the primary composed above.	puter and network vendors tha	at support the applications		
App	lication Name	Computer Vendor	Network Vendor		
2.b.	Please note the protocols tha	t support the applications note	ed above.		
App	lication Name	Computer Vendor	Network Vendor		
App	lication Name	Computer Vendor	Network Vendor		

- 3.a. What do your top 3 EDI application/network configurations look like? Could you please give us a brief description now and then forward a more detailed description in the form of network design/layout diagrams which indicate the type of networks, systems used, etc.
- 3.b. Using the OSI Basic Reference Model, please diagram the top 3 transfer protocols which you currently support.

OSI Ref. Model	Example A	Example B
EDI Application Presentation Session Transport Network Data Link Physical	X.25 HDLC I.430/I.431	MHS X. 226 X. 225 X. 224 X. 25 HDLC I.430/I.431
OSI Ref. Model	Example 1	Example 2
Application Presentation Session Transport Network Data Link Physical		
OSI Ref. Model	Example 3	Example 4
Application Presentation Session Transport Network Data Link Physical		

YWNPR-1 C-2

OSI	Ref. Model Example 5
Prese Session Trans Netw	sport vork Link
4.a.	What role does MHS play in your environment?
4.b.	Is MHS used? Yes No
4.c.	If not, is it planned to be used? Yes No
	If yes, when?
4.d.	Any other comments on the desirability of MHS?
	If we have follow-on questions, may we speak with your project leader(s)? YesNo
5.b.	If yes, what is/are their name(s)?

YWNPR-1 C-3

1.4101000

6.	What are some of the more significant problems you have encountered with EDI applications and what methods or approaches are being used to solve them?
7.	Who were some of the other vendors who participated in the development of you application?
8.	Other comments?

C-4

Appendix D

Terms

- 1. AIAG Automotive Action Group
- 2. EDIFACT The ISO standard for Electronic Document Interchange for Administration, Commerce and Transportation.
- 3. FTAM File Transfer Access Management
- 4. Mailbag program that also addresses delivery of electronic mail messages.
- 5. MHS Message Handling Service, a generic term applied to X.400.
- 6. ODETTE Organization for data by telegraphic transfer within Europe.
- 7. PSN Public Switched Network
- 8. SDLC Synchronous Data Link Control
- 9. TDCC Transportation Data Coordinating Committee
- 10. TRADACOMS Message standard for data interchange between major United Kingdom retailers and suppliers.
- 11. UCS Uniform Communication Standard for the grocery industry in the United States.
- 12. VAN Value Added Network
- 13. X.400 the international standard for electronic mail message transfer.
- 14. X.435 electronic data interchange standard within X.400.
- 15. X.500 address and directory services standard.

About INPUT

INPUT provides planning information, analysis, and recommendations for the information technology industries. Through market research, technology forecasting, and competitive analysis, INPUT supports client management in making informed decisions.

Subscription services, proprietary research/consulting, merger/acquisition assistance, and multiclient studies are provided to users and vendors of information systems and services. INPUT specializes in the software and services industry which includes software products, systems operations, processing services, network services, systems integration, professional services, turnkey systems, and customer services. Particular areas of expertise include CASE analysis, information systems planning, and outsourcing.

Many of INPUT's professional staff members have more than 20 years' experience in their areas of specialization. Most have held senior management positions in operations, marketing, or planning. This expertise enables INPUT to supply practical solutions to complex business problems.

Formed as a privately held corporation in 1974, INPUT has become a leading international research and consulting firm. Clients include more than 100 of the world's largest and most technically advanced companies.

INPUT OFFICES

North America

San Francisco 1280 Villa Street Mountain View, CA 94041-1194 Tel. (415) 961-3300 Fax (415) 961-3966

New York
Atrium at Glenpointe
400 Frank W. Burr Blvd.
Teaneck, NJ 07666
Tel. (201) 801-0050 Fax (201) 801-0441

Washington, D.C.
INPUT, INC.
1953 Gallows Road, Suite 560
Vienna, VA 22182
Tel. (703) 847-6870 Fax (703) 847-6872

International

London INPUT LTD. Piccadilly House 33/37 Regent Street London SW1Y 4NF, England Tel. (071) 493-9335 Fax (071) 629-0179

Paris INPUT SARL 24, avenue du Recteur Poincaré 75016 Paris, France Tel. (33-1) 46 47 65 65 Fax (33-1) 46 47 69 50

Frankfurt
INPUT LTD.
Sudetenstrasse 9
D-6306 Langgöns-Niederkleen, Germany
Tel. (0) 6447-7229 Fax (0) 6447-7327

Tokyo INPUT KK Saida Building, 4-6 Kanda Sakuma-cho, Chiyoda-ku Tokyo 101, Japan Tel. (03) 3864-0531 Fax (03) 3864-4114

