
BEYOND TSO:

PRODUCTIVITY TOOLS COME OF AGE

FEBRUARY 1982

^ BEYOND TSO: PRODUCTIVITY TOOLS COME OF AGE

CONTENTS

Page

I INTRODUCTION I

II WHY TSO? 5
^ A. Data Processing Productivity: Overview 3

B. The Rise Of TSO 7
C. TSO Problems 1 I

III BEYOND TSO 13

A. Early Attempts To Deal With TSO Problems I 3

B. Newer TSO Alternatives 14

1. Programmer's Workbench (PWB) 15

2. Maestro 1

7

C. Current Choices 19

D. Future Directions 21

• IV BEYOND THE TSO "MIND-SET" 23

•

- i
-

©1982 by INPUT. Reproduction Prohibited. INPUT
J-105-138

BEYOND TSO: PRODUCTIVITY TOOLS COME OF AGE

EXHIBITS

Page

II -I Hardware Cost/Performance 4
-2 Hardware Versus Software Improvements, Cost/

Performance £,

-3 Selected Interactive Development Systems 10

III -I Modes Of Programming Development 20

IV -I Cumulative Costs Over System Life 2k

- ii -

©1982 by INPUT. Reproduction Prohibited. INPUT
*

INTRODUCTION

INTRODUCTION

For three yearSj INPUT has been tracking current efforts in the area of

software productivity. Previous INPUT reports on the subject include:

Performance Improvement; User Techniques and Experiences (February

1979).

Software Directions; Languages, Development Aids, DBMS and DPP

(July 1979).

Managing the System Development Process (December 1 980).

In addition, a major multiclient study was delivered in 1981, entitled Improving

the Productivity of Systems and Software Implementation .

The consistent refrain from managers of system development has been that

interactive program development, using IBM's Time Sharing Option (TSO) or

the equivalent, is the most visible productivity improvement tool in use today.

However, this is not a new tool by any means, having been introduced to many

of these organizations in the early 1970s.

There is little question that the "bottleneck" of systems development can be

relieved, but not eliminated, by turning an increasing percentage of routine

development and enhancement effort back to the end users to accomplish

directly via "user-friendly" tools.

-
I
-

©1982 by INPUT. Reproduction Prohibited. INPUT

This report focuses on the applications which, because of their complexity,

performance requirements, and/or criticality (to multiple units within the

organization), will remain the responsibility of the information systems group.

- 2 -

©1982 by INPUT. Reproduction Prohibited. INPUT
*

II WHY TSO?

II WHY TSO?

A. DATA PROCESSING PRODUCTIVITY: OVERVIEW

• It is a truism of data processing that advances in hardware have occurred at a

steady rate which promises to continue for the foreseeable future.

Capabilities increase dramatically.

Reliability continues to improve.

Equally important, the cost/performance curve shows little sign of

faltering, as shown in Exhibit II- 1.

• Without these hardware improvements, computers would be laboratory curiosi-

ties with few practical applications.

• Software is a somewhat different story.

Capabilities (e.g., languages, utilities, DBMS, etc.) have increased.

However, reliability, while perhaps improving, is variable.

In the critical area of cost/performance, software development and

maintenance are in the doldrums.

- 3-

©1982 by INPUT. Reproduction Prohibited. INPUT

EXHIBIT II-1

HARDWARE COST /PERFORMANCE

Cost / Performance
(Log Scale)

1955 1965 1975 1985

- 4-
©1982 by INPUT. Reproduction Prohibited.

There have been positive advances in programming, as far as languages are

concerned.

Without the progression from machine language to assembly language to

today's "high-level" languages (COBOL, FORTRAN, etc.), it is doubtful

whether the great expansion in the use of data processing could have

taken place.

But Exhibit 1 1-2 reveals the relatively modest software improvement

compared to hardware improvement.

Many of the efficiency gains in switching to high-level languages were

immediately lost by the concomitant rise of ever more complex

operating systems (needed to act as an interface between application

programs and the machine).

No single invention has caused as much programmer suffering as

IBM's operating systems, and especially the related job-control

language (JCL).

While operating systems have become more stable in recent

times, and the applications programmer is more shielded from

their grim realities, "user-hostility" of the IBM OS (DOS, MVS,

etc.) has not changed much in 15 years.

The remaining gains in language efficiency have largely also been lost

to the increased complexity of the overall programming environment.

The programmer must now routinely contend with the challenges

of teleprocessing and data base management systems.

The "layering in" of distributed data processing adds significantly

to the problems of programming.

- 5 -

©1982 by INPUT. Reproduction Prohibited. INPUT

EXHIBIT 11-2

HARDWARE VERSUS SOFTWARE IMPROVEMENTS,

COST/PERFORMANCE

Cost / Performa nee
(Log Scale)

1955 1965 1975 1985

- 6 -

©1982 by INPUT. Reproduction Prohibited.

B. THE RISE OF TSO

• Many of the efforts to improve the programming activity have focused, quite

justifiably, on the mechanics of programming; i.e., the process of coding and

debugging.

• Until less than ten years ago, the mechanics of programming were tortuously

slow, frustrating, and hardly categorized as productive.

Coding sheets, keypunched cards, and batch operating procedures

combined to keep the execution of ideas far behind the conception.

Getting three turns at the computer each day was "programmer

heaven." One turn a day was considered good at many installa-

tions.

Remote job entry (RJE) card readers and keypunch machines for the use

of programmers were considered significant productivity tools.

• In this environment, the introduction of IBM's TSO in the early -1970s was a

giant step forward.

• TSO is essentially a powerful text editor that eases communications with the

IBM mainframe, operating system, and associated utilities.

Code can be entered and stored from a CRT.

The TSO command language provides immediate access to data (includ-

ing source programs, job control, etc.) stored in the TSO libraries, or

other data sets catalogued on the system.

Program code and other accessed data sets con be modified in an

on-line environment.

- 7 -

©1982 by INPUT. Reproduction Prohibited. INPUT

• Narrative text (for documentation or otiier purposes) can be stored, manipu-

lated, and retrieved.

The TSO software permits RJE submission of the completed program

for compilation, testing, etc.

To the user, this mode often appears to be on-line compilation

and testing, although it really is not.

Some versions of TSO and similar productivity tools do permit

interactive compilation and debugging.

However, TSO has inherent limitations caused by the batch orientation

of IB^A architecture. At the least, this causes a significant amount of

resources to be consumed.

This is in contrast to most minicomputers, which are designed to

be interactive machines.

• TSO was developed for the MVS (0S/VS2) operating system. For virtual

machine (VM) operating systems, the Conversational Monitor System (CMS)

provides similar capabilities, including:

Immediate access to programs and data.

Advanced text-editing features.

Ability to run programs interactively for testing and debugging.

• Independent software vendors have developed functionally similar software

packages running under their own or IBM's telecommunications monitors.

• Other mainframe vendors offer development aids which provide many of the

same functions as TSO.

- 8-
©1982 by INPUT. Reproduction Prohibited. INPUT

*

Exhibit II-3 lists some of the packages similar in purpose to TSO. ("TSO" is

used collectively to describe TSO and its "look-alikes").

From one standpoint, TSO has been a smashing success. It is no exaggeration

to say that any moderate to large installation that is not using TSO is probably

planning or wishing to use it.

Many larger installations have hundreds of TSO terminals.

Frequently, the goal is to have a separate terminal for each pro-

grammer (the typical ratio now is three to four programmers sharing a

terminal).

Productivity, measured in lines of code (LOC) per programmer day, has

increased, according to the fragmentary and noncomparable data available.

While not a comprehensive measure of productivity, LOC may be used

by managers who feel the need to track something other than mile-

stones as programmer output.

Eventually, however, most installations with large TSO networks have experi-

enced performance difficulties caused by insufficient CPU or memory

capacity.

TSO jobs themselves are delayed.

Even when partially disabled, TSO turnaround is far superior to

the older batch/RJE; but it then no longer meets heightened

expectations of its users (who are programmers, for the most

part).

Production jobs may also experience worsened response time.

- 9 -

©1982 by INPUT. Reproduction Prohibited. INPUT

EXHIBIT II-3

SELECTED INTERACTIVE DEVELOPMENT SYSTEMS

NAME VENDOR

ROSCOE and VOLLIE Applied Data Research

WYLBUR On-Line Business Systems, Inc.

TONE Tone Software Corp.

D05/VS Entry Time Sharing
System (ETSS)

IBM

0-W-L (On-Line Without
Limits)

National Computing Industries

OTS-On-Line Terminal System
for Program Development

JBL Systems

ICCF-I nteractive Computing
and Control Facility

IBM

ACEP Software Module Marketinq

- 10-
©1982 by INPUT. Reproduction Prohibited. INPUT

*
U-V20-R

TSO PROBLEMS

Why has TSO not been the panacea it was expected to be? The main reason is

that TSO simply consumes a great deal of resources, for the following reasons:

Text editing , Pre-TSO, a lot of text editing was done off-line

(keypunching, replacing cards in decks). The trade-off from time-

consuming manual methods to electronics is good. However, using 3033

CPU cycles for primitive word processing is very expensive, especially

if done during prime business hours.

Increased prime time use . Batch-era compilation and testing gave

computer operations groups more direct control over the scheduling of

programmer jobs. More importantly, programmers acquiesced in this

and expected that much of their work would be performed during off-

hours.

During the initial installation of TSO there are usually sufficient

computer resources for very impressive turnaround performance

(otherwise the TSO installation would - or should - be delayed).

This quick turnaround gives rise to new programmer expectations

and behavior that can rarely be changed.

Software overhead . IBM-developed software products tend to require

significant amounts of hardware resources in relationship to work done.

TSO is not an exception.

Increased productivity . If a programmer can get ten TSO turns at the

computer a day versus three using RJE, this is called increased

productivity - and in some cases, actually is.

Increased sloppiness . It is reasonable, though, to inquire as to the

character of the ten turns mentioned above. Are five of these turns

- I I
-

)1982 by INPUT. Reproduction Prohibited. INPUT

devoted to correcting errors (including errors in keystroking, syntax,

and logic)? No one knows, but there is a widespread belief that TSO has

further encouraged the already pronounced characteristic of many

programmers to code rather than to think.

• In most installations this performance squeeze is aggravated by a capacity

planning process that is not able to:

Forecast hardware requirements sufficiently ahead of the need.

Justify increased hardware resources for no obvious compensating

reduction in system development time.

• Capacity planning for TSO-related needs may sometimes be more difficult

than for production work. Some types of software development place sudden

burdens on the system.

However, in principle, development-related needs should be as pre-

dictable as any other resource demand.

These issues will be discussed at length in the INPUT Report, Perfor-

mance Measurement and Capacity Planning (September, 1 982).

• Switching from TSO to CMS, or some other more efficient program develop-

ment aid, offers little more than to delay the inevitable shortage of resources.

Of course, a strong case can be made for starting out with a more

efficient alternative, if the commitment to TSO has not already been

made, or if the organization is willing to acquire or develop the "bridge"

software (for example, from VM to VS files).

- 12 -

©1982 by INPUT. Reproduction Prohibited. INPUT
*

BEYOND TSO

Ill BEYOND TSO

A. EARLY ATTEMPTS TO DEAL WITH TSO PROBLEMS

• Increasingly, installations which can afford it ore attempting to deal with

these capacity problems by giving programmers the sole use of a complete

system (e.g., perhaps an "outgrown" 370/158 now that production is run on a

303X machine).

This isolates the conflicting and somewhat unpredictable programmer

demands from production demands for machine time.

A side benefit is that it becomes easier to ensure that development,

test, and production versions of the same software remain separated.

• Many installations, however, do not have an "outgrown" 370 lying around to

give to programmers. Other installations are looking for development tools

that are easier than TSO to use and that support efficient programming

approaches.

- 13-

)1982 by INPUT. Reproduction Prohibited. INPUT

B. NEWER TSO ALTERNATIVES

An innovative approach to on-line program development has surfaced in two

commercial products, the Programmer's Workbench (PWB) and Maestro, based

on the concept that program source coding is largely a text-editing function

and is radically different from the execution of object code.

Pursuing this concept to its logical conclusion, there is no compelling

reason why on-line source program development has to be done on the

same system on which the related object program will execute:

historically, it just happened that way because additional memory was

less expensive than redundant CPUs.

Accordingly, Maestro and, to a lesser degree, PWB have effected a

physical separation of the on-line program development function from

the "target" system on which the program being developed will execute.

Both PWB and Maestro are implemented on small computers - Digital

Equipment PDP-I Is and Four-Phase systems, respectively - and besides

the demonstrably lower hardware costs involved, both systems were

intended from their inception to be on-line systems rather than

timesharing adjuncts to existing batch operating systems.

Both systems provide extensive source library maintenance facilities

and macro-like capabilities that expand programmer-defined "short-

hand" coding into full source-language constructs acceptable to the

target compilers. Additional features unique to each system are

described below.

Up to this point, aside from off-loading the mainframe, there is little

difference between PWB or Maestro and the mainframe-based text editors

(TSO, CMS, ROSCOE, etc.).

- 14-
©1982 by INPUT. Reproduction Prohibited. INPUT

Nevertheless, several customers of the mini-based products justified

their procurement solely on these cost and availability trade-offs.

Others have utilized satellite 4300s to perform development functions,

using the same kind of justification arguments.

PROGRAMMER'S WORKBENCH (PWB)

PWB runs under the proprietary UNIX operating system developed by Bell

Laboratories. PWB relies heavily on the unique characteristics of UNIX, and is

therefore logically inseparable from UNIX.

PWB was originally developed for use by engineering departments, hence its

support of FORTRAN and C compiler languages. (UNIX itself is written in C.)

Guided by the perception that the key to encouraging productive use of the

system was the provision of tools with which users are familiar (and which

they believe are useful), the developers of PWB/UNIX incorporated an

extensive set of primitive functions into UNIX that enables each user to build

his own program development tools.

Thus, each user can devise his or her own "shorthand" for writing source

statements in abbreviated form, under control of user-devised tools.

PWB/UNIX then expands abbreviations into syntactically correct com-

piler language statements.

A user can therefore start with the easy-to-use command language

system (called the "Shell"), and as the user becomes comfortable with

the PWB/UNIX environment, can add new program development tools

for either personal or systemwide use. This also helps to spread the

capital investment needed to tailor a program production system that

meets a specific organization's requirements.

- 15-

©1982 by INPUT. Reproduction Prohibited. INPUT

In addition to this macro-like facility, a powerful text processing

system enables the system's users to update narrative program docu-

mentation conjointly with source statement revisions. In fact, many

users are familiar only with the powerful text processing features.

The text processing feature interfaces directly with a typesetting

system of great flexibility.

The Source Code Control System (SCCS) is a PWB/UNIX feature that

automatically maintains each generation of source code and documen-

tation by date or version number. Thus, reconstruction of any version

of a program or document is available on request.

• Since PWB was originally developed in scientific and engineering environ-

ments, it supports the C language (and the "Shell") better than other

languages.

The lack of the same level of support for COBOL would be a hindrance

in the typical business environment, although some users have employed

it successfully for COBOL maintenance tasks.

• Another problem is in the level of support for target machines. Target

hardware includes (in decreasing order of ease of transferring compiled

programs to such hardware environments):

The UNIX system itself (e.g., the DEC hardware on which development

is undertaken).

Other UNIX-based mini- and microcomputers.

Mainframes which accept the UNIX system underneath the mainframe's

operating system (e.g., the Amdahl mainframes).

- 16-

©1982 by INPUT. Reproduction Prohibited. INPUT
*

Perhaps the biggest drawback to the PWB is the wide variety of choices and

adaptability open to the user.

New users may not know how to proceed.

Early versions of UNIX needed expert programmers. Later versions are

more user-friendly, but still require a very knowledgeable person to

make the system perform.

PWB/UNIX is licensed by Western Electric, AT&T's manufacturing subsidiary,

on an "as-is" basis, with no support and minimal documentation.

Several firms, such as Interactive Systems Corp. of Los Angeles,

California, are licensed by Western Electric to resell PWB/UNIX, and

such resellers typically add features, documentation, and support.

PWB-UNIX users cite poor documentation (even from resellers) as a

major shortcoming of the system. Other shortcomings are the lack of

on-line prompting and the absence of support from Western Electric.

This problem is partially inherent in its flexible design: it is not

possible to document all the things that might be done with a

very flexible tool.

MAESTRO

Maestro was developed by Softlab GmbH of Munich, West Germany, and i§

marketed in the United States by Softlab Systems, of Son Francisco, Cali-

fornia. Over 100 Maestro systems have been installed in Europe, and about 40

in the U.S.

Maestro's program preparation tools include:

- 17 -

©1982 by INPUT. Reproduction Prohibited. INPUT

Interactive procedures that assist in the production on-line of Nassi-

Schneiderman design charts ("Structograms," in Maestro's product liter-

ature) by systems analysts and end users through on-line pronnpting.

Support of HlPO charts and decision tables.

Syntax prompting and limited editing for COBOL, FORTRAN, and PL/ 1,

reflecting Maestro's business data processing orientation.

Like PWB/UNIX, Maestro offers extensive source library maintenance facili-

ties and shorthand coding capabilities.

Skeletal programs, programmer notes, system documentation, test

results, work in progress, previous versions, etc., can all be tied

together via programmer-defined "electronic bookmarks" to permit

immediate screen reference back and forth among up to 12 separate

files of information.

Support and extensive documentation are available from the vendor.

Unlike PWB, Maestro does not produce compiled programs (or permit direct

testing). It will produce code which can be transmitted to the host for

compilation and later testing.

Obviously, the designers of Maestro realized the problem of producing

compiled code for different computers and decided to avoid the

problem entirely.

This has an advantage in that, unlike users of the PWB, Maestro users

do not have to concern themselves over target machine questions.

However, it also means that Maestro users have not cut themselves off

from a|[the problems of having to depend on the mainframe for

development: compiling and testing must still be done on the host.

- 18 -

©1982 by INPUT. Reproduction Prohibited. INPUT
*

C. CURRENT CHOICES

• PWB/UNIX and Maestro are indicative of the positive efforts currently

underway in the area of computer-aided design and computer-aided pro-

gramming, and clearly suggest the trends which will be influencing the systems

development cycle in the future. However, each has defects under certain

circumstances, as shown in Exhibit III- 1.

• PWB/UNIX is a very powerful tool, but its power makes it most suitable for

the professional programmer or engineer.

In addition, its orientation is still primarily toward the scientific

programmer in terms of both:

Primary language.

Target machine.

• Maestro's drawbacks are almost the mirror image of PWB/UNIX:

It is still tied to the host machine; consequently its throughput during

compilation and testing will be affected by host capacity "crunches".

Its ready-made promptings and guidance are good for the journeyman

programmer, but much less supportive for the expert programmers

(which all installations should be striving to attract and keep).

• Within these constraints, either of these systems can be a desirable alternative

to TSO.

However, installations with an obsolescent (i.e., cheap) 370 and

an adequate TSO-type system (to serve as a standalone develop-

ment machine) may have an attractive interim alternative.

- 19-

©1982 by INPUT. Reproduction Prohibited. INPUT

EXHIBIT lll-l

MODES OF PROGRAMMING DEVELOPMENT

CD
00M
<

c

3J "

Q. I

C
o
5'

3

o

C"
<:

TSO-TYPE TSO-TYPE

CHARACTERISTICS BATCH RJE

SYSTEM
SHARED WITH
PRODUCTION

SYSTEM
DEDICATED TO
DEVELOPMENT MAESTRO PWB/UNIX

• Fast Response Time? No No* Varies** Yes Yes Yes

• Easy to Use? No No No No Yes Not Initially

• Editing Separate
from Compilation? No No Varies*** Varies*** Yes No

• Prompted Coding? No No Varies*** Varies*** Yes Possible

• Compiled on
Development System? Yes Yes Yes Yes No Yes

• Testing on Develop-
ment System? Yes Yes Yes Yes No Usually

w 1 1 1 LtlTL^ I Cj LcLi L/co 1 U 1

1

Tools ? No No Some Some Many Some

• "Documentation-
Friendly" ? No No Somewhat Somewhat Yes Somewhat

• Integral Libraries,

Reusable Modules? No No Varies*** Varies*** Limited Yes

• Cost

- Start Up Low Low /Med Medium High Med/High Medium

- Mainframe
Overhead

Medium Medium High High Low/Med Low/Med

• Flexibility Very
Low

Low Medium Medium Medium High

• BUT BETTER THAN BATCH
'* DEPENDS ON WORKLOAD
DEPENDS ON PACKAGE AND IMPLEMENTATION

D. FUTURE DIRECTIONS

The drawbacks to current tools may be alleviated by tools that are currently in

the design and experimental stage.

One possibility is to use powerful microprocessors as the basis for small

shared systems.

Another even more exciting possibility is the "personal development

machine" that would function as a self-contained unit for each pro-

grammer.

The latter is beginning to be discussed under the term "software engineering

environment."

In either case, the software implementation would require several key

attributes:

The environment would have to be highly structured for the great

majority of programmers.

Most programmers could be trained to view this as being user-

friendly, in the sense of being helpful and supportive.

From management's standpoint this would be a useful way of

enforcing rules and encouraging sound programming practice.

On the other hand, the superior programmer needs to be able to create

a unique individual environment, such as with PWB/UNIX.

There will have to be a (conceptual) "lock" on the machine which

allows only the elite to use these features.

- 21 -

)1982 by INPUT. Reproduction Prohibited. INPUT

The machine should have its own compilers to allow code to be

generated for a variety of target machines.

The individual personal development machines should have the capa-

bility of linl<ing together to share files, program modules, etc. so that

the development network can keep itself isolated from hosts.

- 22 -

©1982 by INPUT. Reproduction Prohibited. INPUT
*

IV BEYOND THE TSO "MIND-SET"

BEYOND THE TSO "MIND-SET"

Even the best replacement for TSO will still be focusing on mechanics; i.e.,

how to generate code.

Code generation and debugging consume less than one-fifth of the

classic system development cycle's costs, and less than 10% of total life

cycle costs, as shown in Exhibit IV- 1. Therefore, the scope for true (as

opposed to apparent) cost savings is low.

In fact, by making coding progressively easier, there may be continually

less thought given to basic design issues.

If coding were where analysis and design are now, it would still be in the

darkest batch days (undoubtedly using machine language).

Most installations would do far better to devote themselves to finding

better ways to analyze problems and translate these results into

program design.

This is what will produce long-lasting reliability and cost savings.

Another approach, even further away from the coding tool concept, is to try to

do away with coding itself as much as possible.

- 23-

©1982 by INPUT. Reproduction Prohibited. INPUT

EXHIBIT IV-1

CUMULATIVE COSTS OVER SYSTEM LIFE

ANALYSIS CODING DEBUG- DOCU- OTHER MAIN- •
CING MENTA- TENANCE

RION

- 24-

©1982 by INPUT. Reproduction Prohibited. INPUT
U-V20-R

This would mean following the "bread boarding" approach by means of

the so-called fourth generation languages (FOCUS, RAMIS, etc.).

These concepts are still largely experimental. Translating from the

prototype to the production environment requires skill, and a consider-

able amount of programmer intervention.

However, the concept holds great promise from the standpoint of speed

and accuracy in meeting user needs.

Questions concerning efficiency are reminiscent of the age-old

COBOL-Assembler debate, considering that over half of the

programs in existence today cost more to develop than to

operate for their lifetime.

The "software engineering environment" approach which is an integral part of

the Ada language, plus the experimental work being done by the Japanese and

by a few specialized vendors in the U.S., will deliver by mid-decade a

substantial advance to the technique of software development.

It is not particularly difficult to automate portions of the development

process, and even the entire process if batch-oriented and not too complex.

Screen-generators, file-management systems, and skeletal programs (in

the form of macroprocessors) have been in existence for some time.

Rigorous requirements languages permit computers to assist in finding

conflicts or "holes" in systems definitions.

Specialized test analyzers, while expensive to run, have proven their

worth in applications of high criticality.

Many microcomputers boast of existing, or soon-to-be released, application

generators for routine kinds of processing applications.

-25-
©1982 by INPUT. Reproduction Prohibited. INPUT

But the truth is that the more complex kinds of real-time applications (the

integration of existing applications or the state-of-the-art, first-time-ever

applications) are still beyond the scope of these powerful tools.

An even more serious drawback is that many organizations have not even made

the managerial commitment to choose the strategic solution over the tactical

alternative, and thus continue to add to their problems rather than solve them.

For these organizations, even the software engineering environment

will not be a solution.

The five-year plan for improved software productivity must include:

Initial research and experimentation with "foundation" tools, including a

study of the changes these tools cause (and permit) in basic thinking

about systems.

Greater understanding of data base requirements, including cost/benefit

analysis of the appropriate media and level of detail for data storage.

Not everything can - or needs to be - on-line!

Preliminary efforts to integrate "tool fragments" for specific, rather

than general, purposes.

Development of a laboratory or testbed for reconfiguring system

development tools under controlled conditions.

- 26-
©1982 by INPUT. Reproduction Prohibited. INPUT

