
Fourth Generation
Languases Update:
Potential Unrealized

USUP
1985

C.l INPUT

About INPUT

INPUT provides planning infornriation, analysis, and
recommendations to managers and executives in the

information processing industries. Through market
research, technology forecasting, and competitive

analysis, INPUT supports client management in

making informed decisions. Continuing services are

provided to users and vendors of computers,
communications, and office products and services.

The company carries out continuous and in-depth

research. Working closely with clients on important

issues, INPUT'S staff members analyze and inter-

pret the research data, then develop recommen-
dations and innovative ideas to meet clients' needs.

Clients receive reports, presentations, access to data

on which analyses are based, and continuous
consulting.

Many of INPUT'S professional staff members have
nearly 20 years' experience in their areas of speciali-

zation. Most have held senior management positions

in operations, marketing, or planning. This exper-

tise enables INPUT to supply practical solutions

to complex business problems.

Formed in 1974, INPUT has become a leading

international planning services firm. Clients include

over 100 of the world's largest and most techni-

cally advanced companies.

Offices

North America

Headquarters
1943 Landings Drive

Mountain View, CA 94043
(415) 960-3990
Telex 171407

New York
Parsippany Place Corp. Center
Suite 201
959 Route 46 East

Parsippany, NJ 07054
(201) 299-6999

Washington, D.C.

11820 Parklawn Drive

Suite 201
Rockville, MD 20852
(301) 231-7350

Europe

United Kingdom
INPUT
41 Dover Street

London W1X 3RB
England
01-493-9335
Telex 27113

Italy

Nomos Sistema SRL
20127 Milano
Via Soperga 36
Italy

Milan 284-2850
Telex 321137

Sweden
Athena Konsult AB
Box 22232
S-104 22 Stockholm
Sweden
08-542025
Telex 17041

INPUT
Planning Services For Management

FOURTH GENERATION LANGUAGES UPDATE:
POTENTIAL UNREALIZED

AUTHOR

TITLE

DATE
LOANED

x~
BORROWER'S NAME

1

CAT. No. 23-108 PRINTED IN U.S.A.

FOURTH GENERATION LANGUAGES UPDATE:

POTENTIAL UNREALIZED

ABSTRACT

Controversies concerning data models, operating systenns, and hardware architecture

all appear relatively objective compared to the emotional arguments that have

traditionally surrounded computer languages. The current claims being made for

fourth generation languages are all too familiar to anyone who is aware of the

history of language development, but even those who have some perspective have a

self-destructive propensity to make age-old mistakes. One of the mistakes is to put

a general label on an ill-defined concept; another is to promote limited solutions for

universal problems.

This report positions FGLs between data base management systems and more

advanced productivity improvement techniques and analyzes all current productivity

improvement efforts against the projected technological environment and IBM's

software strategy. The scope of this report will range from first to fourth, fifth, and

future generation languages. The purpose is to bring order out of the chaos, over-

simplifications, and misunderstandings which surround the subject of languages.

This report contains 54 pages, including 7 exhibits.

U-SUP-741

INPUT

FOURTH GENERATION LANGUAGES UPDATE:

POTENTIAL UNREALIZED

CONTENTS

Page

1

A. Reasons for Preparing Report 1

1

B. Scope and Methodology z

tzs/tzr^i iTi\/P CI l^/\^AADV Q

A. Trends in Language Use
B. Do 4GLs Contribute to DSD Problems

r

6

C. Overrating and Undervaluing 8
D. Take a Broad View of Productivity 10

E. Establish Standards and Guidelines 12

TMP QTATP r^P Pni IRTM r^PKIPR A TinK! 1 AMPI IAr"PQ 1 c

A. FGL Trends 15

1. Review of Language Evolution 15

2. Where Do ^frGLs Stand? 19

i. Distributed Systenns Development 24

4. Where Are FGLs Going? 26
B. Problems of Misuse 28

1. FGLs and the DSD Environment 28

2. Productivity and Performance 28
3. Reality versus Theory in 4GL Misuse 29

C. IBM's Strategy 35

OPPORTUNITIES AND CHALLENGES 41

A. 4GLs to FGLs 41

B. Language Extensibility 43

C. Language Opportunities and Strategic Periods 44

CONCLUSIONS AND RECOMMENDATIONS 47

A. Conclusions 47
B, Recommendations 48

APPENDIX A: INPUT SYSTEM CATEGORIES 51

- i
-

©1985 by INPUT. Reproduction Prohibited. INPUT
U-SUP-295

FOURTH GENERATION LANGUAGES UPDATE:

POTENTIAL UNREALIZED

EXHIBITS

Page

II -I Trends in Language Use 5
-2 Are 4GLs a Part of the Problem? 7

-3 Overrating and Undervaluing 9
-4 Take a Broad View of Productivity 1

1

-5 Establish Standards and Guidelines 13

111 -I Language Evolution 20
-2 Trends within Selected Systenns 21

- ii -

©1985 by INPUT. Reproduction Prohibited. INPUT

I INTRODUCTION

A, REASONS FOR PREPARING REPORT

• Controversies concerning data models, operating systenns, and hardware

architectures all appear relatively objective compared to the emotional (and

frequently irrational) arguments which have traditionally surrounded computer

languages. The current claims being made for fourth generation languages are

all too familiar to anyone who is aware of the history of language develop-

ment, but even those who have some perspective have a self-destructive

propensity to make age-old mistakes. One of the mistakes is to put a general

label on an ill-defined concept; another is to promote limited solutions for

universal problems.

• INPUT recognized the first of these mistakes in Trends and Opportunities in

Fourth Generation Languages and deliberately defined fourth generation

languages on a broad basis which included the potential for growth and even

relabeling. Rather than use 4GL as an identifier, FGL was adopted so fourth

and fifth and future could all be rolled together. The point is that languages

evolve and do not lend themselves to strict classification. This is especially

true for the hodge-podge of current FGLs and their obvious (and sometimes

ominous) direction. This report will attempt to provide some clarity to the

situation by providing a structure based on where current FGLs came from

and where they are likely to flounder on some well-charted rocks of reality.

- i
-

©1985 by INPUT. Reproduction Prohibited. INPUT

• This report will position FGLs between data base management systems and

more advanced productivity improvement techniques and will analyze all

current productivity improvement efforts against the projected technological

environment and IBM's software strategy. This report can be viewed as both

an update and extension of previous INPUT reports on FGLs.

B. SCOPE AND METHODOLOGY

• This report is the centerpiece of a set which includes Data Base Management

Systems and Applications Development Techniques. The three reports are

tightly integrated, and it is not recommended that any one be used without a

thorough understanding of the other two; they do not stand alone. The

structure and methodology employed for the series was explained in the

introduction to the first report, Data Base Management Systems.

• The scope of this report remains necessarily broad because INPUT believes

that languages have evolved and will continue to evolve. In the belief that

"what is past is prologue," this report will range from first to fourth to fifth

to future. Significant past failures and successes will be isolated with specific

emphasis upon how languages have restructured and extended the market for

computer products and where they have failed to do so.

• The purpose is to bring some order out of the chaos, oversimplication, and

misunderstanding which surrounds the subject of languages.

- 2 -

»1985 by INPUT. Reproduction Prohibited. INPUT

EXECUTIVE SUMMARY

This executive summary is designed in a presentation format in order to:

Help the busy reader review key research findings.

Provide a ready-to-go executive presentation, complete with a script

to facilitate group communication.

Key points of the report are summarized in Exhibits II- 1 through 11-5. On the

left-hand page facing each exhibit is a script explaining the contents of the

exhibit.

-3-

©1985 by INPUT. Reproduction Prohibited. INPUT

A. TRENDS IN LANGUAGE USE

• 4GLs are breaking away from traditional uses in the years ahead.

Simple one-time reports will be replaced by production applications.

Today's "pseudo production" will become mainline transaction and

batch systems.

Performance requirements will shift in importance from low to high.

Tools for the analyst/programmer will continue to be needed, but the

need will expand to the entire use set.

Attention to programming and testing will be secondary, with

companies' primary attention being placed on life cycle considerations.

• FGLs will not by constrained by 4GL definitions; rather:

ICONs, charts, and symbols will proliferate.

Procedures will be inherent in process.

Differentiation will be the key for expert systems.

-4-

©1985 by INPUT. Reproduction Prohibited. INPUT

EXHIBIT 11-1

INPUT

TRENDS IN LANGUAGE USE

• 4GLs

Ad Hoc Reporting Production Applications

"Pseudo Production" ^^^ Transaction and Batch

Low Performance Higli Performance

Requirements Requirements

Analyst/Programmers ^^^^ Programmers
and Casual Users

Programming and Testing mm^^ Requirements
Through Maintenance

^ FGLs will not be restricted by 4GL definitions.

-5-

)1985 by INPUT. Reproduction Prohibited. INPUT
USUP

B. DO 4GLs CONTRIBUTE TO DSD PROBLEMS?

• INPUT has identified certain potential problems associated with Distributed

Systems Development (DSD). These include:

Hardware/software performance.

Systems and data/information quality.

Excessive rework.

Conflicting results.

• The misuse of a 4GL in implementing the Motor Vehicle Registration System

for New Jersey seemed to confirm INPUT'S concerns. In this case:

Response time exceeded specifications by more than an order of

magnitude with only one-fifth of the terminals up.

Operators could not keep up with transaction rates (even with

overtime).

Data and information chaos resulted—police could not check

registrations.

The result is the system must be redone at substantial expense.

-6-

)1985 by INPUT. Reproduction Prohibited. INPUT

EXHIBST 11-2

INPUT

ARE 4GLs A PART OF THE PROBLEM?

4GL Misuse - Case Study

• Response Time 5 Seconds —^ > 5 Minutes

• Unable to Process Transactions

• Data/Information Quality Unacceptable

• System Unworkable

• Enough Blame for Everyone -

Consultant/Client/Vendor

-7-

)1985 by INPUT. Reproduction Prohibited. INPUT
USUP

C. OVERRATING AND UNDERVALUING

• Credit Lady Lovelace with the profound insight that most new developments

tend to be "first overrated and then undervalued,"

• She made the statement about Babbage's "analytical engine" (the first

computer), and it remains an especially important observation about

productivity tools.

® COBOL, DBMS, and structured programming have all been promoted as the

final solution to the productivity problem, and then undervalued because they

failed to meet impossible objectives and expectations.

• 4GLs have peaked in the overrated phase of the cycle and now face the

prospect of being undervalued.

• INPUT urges IS management to take the initiative so that this undervaluation

phase is minimized and 4GLs are placed in their proper perspective.

-8-

)1985by INPUT. Reproduction Prohibited. INPUT

EXHIBIT 11-3

INPUT"

OVERRATING AND UNDERVALUING

Time

• Cobol

• DBMS

• Structured Programming

• 4GLs?

-9-

>1985 bv INPUT. Reproduction Prohibited. INPUT

D. TAKE A BROAD VIEW OF PRODUCTIVITY

• The ability of an individual to get results at performance Level II nnust be

weighed against possible impacts at other levels.

• A 4FGL may permit a human to generate code faster, but what is the impact

on:

Hardware/software performance?

The quality of data/information available to work units?

The contribution to institutional performance (bottom line)?

• Intelligent use of FGLs is required if adverse impacts on other performance

levels are to be avoided and contribution to improved performance

maximized.

• INPUT continues to believe that too much emphasis is placed on tools at the

expense of sound system practices. Sound systems analysis is needed to

optimize all four levels of performance.

1

- 10-

)1985by INPUT. Reproduction Prohibited. INPUT

EXHIBIT 11-4

)

INPUT

TAKE A BROAD VIEW OF PRODUCTIVITY

Performance
Level

ir

Human/ o

Machine 0
Dyad

Hardware.
Software

III Work Unit Networl^s

IV

Institutional Performance

11985 by INPUT. Reproduction Prohibited. INPUT
USUP

E. ESTABLISH STANDARDS AND GUIDELINES

• INPUT has attempted to provide a general framework for evaluation of

productivity tools by presenting systems categories. Establish boundaries for

4FGLs use based on the following:

Where the resulting application (system) will reside in the network

hierarchy (mainframe, minicomputer, or intelligent workstation).

What phase of the development/life cycle is being addressed (require-

ments, analysis, programming, maintenance, etc.).

The type of system being developed (batch, transaction, interactive,

decision support, expert).

The anticipated systems requirements in terms of transaction rates,

processing, data base size, functionality, decision roles, and

responsiveness.

• The resulting standards and guidelines need to recognize that there is no one

total solution to all of the categories and that no tool can substitute for good

systems analysis and design.

1

- 12-

©1985 by INPUT. Reproduction Prohibited. INPUT

EXHIBIT 11-5

INPUT

ESTABLISH STANDARDS AND GUIDELINES

• Establish Boundaries of Use (Standards)

for 4GLs and Other Productivity Tools

- Network Hierarchy

- Development/Life Cycle

- Systems Type

- Systems Requirements

• Publish Guidelines

- 13 -

©1985 by INPUT. Reproduction Prohibited. INPUT
USUP

- 14-

THE STATE OF FOURTH GENERATION LANGUAGES

FGL TRENDS

REVIEW OF LANGUAGE EVOLUTION

The only purpose of computer languages and systenns software in general is to

make computers easier to use. While this conclusion may seem somewhat

simplistic, it becomes extremely complex as soon as two questions are asked:

Easy for whom?

Easy for doing what?

The history of language development is replete with spectacular and

embarrassing failures which mark times when these two questions were either

not asked or the importance of human differences and problem diversity were

ignored. The current enthusiasm for FGLs as the "new solution" for everybody

and to everything is, at best, naive and can be dangerous for vendors and users

who actually believe that a magic solution to the productivity problem has

suddenly appeared.

A general review of language evolution will provide some fundamental lessons

which should have been learned from past experience. A brief analysis of

these lessons will help in structuring the FGL market along the lines of "for

whom" and "for what."

- 15 -

)1985by INPUT. Reproduction Prohibited. INPUT

Perhaps the first lesson learned about computers was the most

profound: computer programs malfunctioned. This meant that

computers did not always do what you "told them to do."

The second lesson was that it was extremely tedious to communicate

with computers in their own language.

The third lesson was that even after you take substantial amounts of

tedium out of the programming process, aptitudes for the craft vary

significantly. (INPUT generally uses a range of 30 to I to define

variations in individual productivity, and some experts consider that to

be conservative.)

Early experience with assembly language soon disclosed that the

handling of data was much more difficult than performing simple

arithmetic on those data (Lesson 4).

The development of FORTRAN confirmed that scientific notation was

easily translated to machine language (Lesson 5).

Since scientifc notation was familiar to engineers and scientists, it was

discovered they could program on a casual or "open shop" basis

(Lesson 6). (It is also probable that aptitude of these early open shop

programmers was substantially higher than that of the general business

community, much less the general population.)

However, former tabulating equipment supervisors soon discovered

that, given a simple data structure (card image), simple reports could

be generated with more ease than "wiring a board," much less

programming a computer (Lesson 7).

- 16-

©1985 by INPUT. Reproduction Prohibited. INPUT

LISP is currently being touted as the second oldest higher level

language (after FORTRAN), so Lesson 8 was learned early—human

reasoning is difficult to simulate in computer systems.

Unlike scientific notation, it soon became apparent to even the

staunchiest COBOL advocate that natural English could not be easily

translated by computers (Lesson 9).

At this point, it also became apparent that executives could not read

COBOL programs (written in "English" acceptable to computers) and

understand what a computer was doing. In fact, it was discovered that

programmers could not easily read each other's programs, and volumi-

nous extraneous documentation was required. Thus, early claims of

self-documentation of "English" as a computer language were put to

rest (Lesson 10).

However, a language which could describe precisely what a computer

was doing in very concise form was developed. It was called A

Programming Language, and it soon became possible to write entire

COBOL and FORTRAN programs in a few "simple" statements

(Lesson II).

Unfortunately, it was found that a language suitable for exercising the

full power of computers in concise language appealed to only a small

subset of those called programmers, confirming Lesson 3 (Lesson 12).

Regardless of all subsequent disclaimers, it was IBM's intention to

replace both COBOL and FORTRAN with PL/ 1, but it became obvious

that programmers are reluctant to change languages and that estab-

lished languages are virtually impossible to replace (Lesson 13).

Designed as a multi-purpose language for both scientific/engineering

and commercial data processing, PL/ 1 succeeded in attracting few

from either user set (Lesson 14).

- 17 -

)1985 by INPUT. Reproduction Prohibited. INPUT

The development of integrated operating environments under general

purpose operating systems capable of running interactive, batch,

DBMS, and a variety of languages demonstrated that a new level of

language complexity (JCL) was required in order to use the various

facilities (Lesson 15).

Concepts of data reduction and information retrieval combined with

the "ready availability" of processable data led to the development of

query languages and ad hoc reporting languages to support management

information systems. Unfortunately, it was soon discovered that file

access methods did not permit easy development of such systems

(Lesson 16).

Even when systems were laboriously hand tailored to provide such

systems, the data files soon required complex restructuring, and even

then the data quality frequently was not capable of supporting the

resulting system (Lesson 17).

As DBMSs developed with languages (such as DL/I) to facilitate the

building and maintenance of data bases, the fact remained that there

was a lot of tedious and unappealing work associated with developing

and maintaining high quality data bases. Considerable human and

machine resource is necessary to maintain data quality. In other

words, data base administration and management remains expensive

and unappealing (Lesson 18).

As timesharing extended computer power to a broader spectrum of

users, it became apparent that a simple, interpretive language was

necessary for casual users sitting at terminals. BASIC proved

successful as a language for the fledgling programming, but is still met

with disdain by most "professionals" (Lesson \9),

- 18-

©1985 by INPUT. Reproduction Prohibited. INPUT

The relational data model (and its associated algebra) demonstrated

that flexibility and ease of use were performance penalties (Lesson 20).

It took years for IBM to get a relational DBMS out of the laboratory

where it was invented, and the performance problems associated with

various prototypes have been well documented. Even after announce-

ment of DB2, caution has been advised against use with large trans-

action-oriented data bases. When IBM urges caution because of

performance problems, everyone should listen (Lesson 21).

Exhibit III- 1 summarizes the above history and resultant lessons.

There are probably other lessons which could be learned from the stormy

history of language development, but those listed by INPUT should be suffi-

cient to permit some structuring of the demand for 4GLs and some barriers to

unqualified accepance of their successors (FGLs).

WHERE DO 4GLs STAND?

INPUT uses a complex set of systems categories for purposes of analysis,

structuring, and forecasting. Each of these categories is broken down into

subsets which are used as a general framework for specific product analysis.

(The categories and their subsets, along with appropriate INPUT references,

are listed in Appendix A.) While it is obviously beyond the scope of this study

to pursue methodology in detail, it is helpful to display current 4GLs against

some of these categories to illustrate their current use, potential, and limita-

tions (see Exhibit III-2).

For example, against the development/life cycle category, it is possible to

reach certain fundamental conclusions concerning 4GLs.

There is little argument that the primary benefit of 4GLs is to get

applications up and running more rapidly than with a third generation

- 19-

©1985 by INPUT. Reproduction Prohibited. INPUT

EXHIBIT

LANGUAGE EVOLUTION

DATES LANGUAGES LESSONS

1950s Machine 1
-

2 -
Programs will malfunction

Programming is tedious

AssemDiy 3 -

4 -
Aptitude varies widely
Data manipulation more difficult than
calculating

Algebraic 5 -

6 -
Scientific notation easily translated

"Open Shop" programming possible

RPGs 7 - Simple data/report structures easily automated

8 - Human reasoning difficult to represent

1960s English 9 -

10 -
"English" difficult to represent
"English" not self-documenting

APL 11 -

12 -
Power and "simplicity" both possible
Few humans appreciate power and simplicity

PL/1 13 -

14 -
Established languages not easily replaced

Multi-purpose not accepted by either user set

JCL 15 - Integrated operating environments add
complexity

OiiPt^v/aH hnp 16 -

17 -
Access methods not enough to support MIS
Data structure and quality required to

support IS

DBMS 18 - Data bases expensive and difficult regardless
of language

BASIC 19 - Simple languages encourage casual use, but
few "professionals" are impressed

1970s Relational
(algebra)

20 -

21 -
Ease of use and flexibility are expensive
Performance penalties will restrict use

-20-

©1985 by INPUT. Reproduction Prohibited. INPUT
USUP

EXHIBIT III-2

TRENDS WITHIN SELECTED SYSTEMS

CATEGORY CURRENT

BARRIERS
(Lessons
Violated) TREND

C - Network Structure

D - Network Hierarchy

G - Development/
Life Cycle

H - Systems Type

I - Systems
Requirements

J - User Set

Output

Mainframes

Programming and.
Test/Debug

Decision Support

Low

Analyst/
Programmer

15

14, 15

9, 10 -

20, 21 -

20, 21 -

3, 14, 19-

All

Minis and Micros

All

Transaction and
Batch

High

Programmers and
Casual Users

-21 -

)1985 by INPUT. Reproduction Prohibited. INPUT
USUP

language such as COBOL, and that these benefits accrue primarily in

the programming and testing/debugging phases of the development/life

cycle.

It is also well known that these two subsets represent approximately

15% of the life cycle costs of an applications system. Thus, if 4GLs

permit development in 1/5 the time of a 3GL (as is usually quoted),

then it is possible to save 12% of life cycle costs. While this may be

significant, it is not sufficient to replace established languages

(Lesson 13).

In addition, it has long been INPUT'S conclusion (based upon extensive

research in systems development productivity) that improvement is

needed in the early stages of the systems development process (in

determining requirements, establishing specifications, and especially

analysis and design). In fact, although tools and aids may be important

in these early stages, it has been concluded that merely spending more

time up front would be of significant benefit over the system's life

cycle. While it can be argued that prototyping using 4GLs gets users

involved in the development process early, it can also be argued with

equal validity that, in the rush to get something running, all four of the

early development phases suffer substantially.

Past experience has shown that development efforts which do not

emphasize the first four phases of the development cycle pay later— in

the last three phases (documentation, installation, and maintenance),

and everyone knows that maintenance represents approximately 60% of

the life cycle costs. It is INPUT'S opinion that current 4GLs do little to

cut these costs and may, in fact, contribute to substantial problems if

they are not used intelligently. (This conclusion is explained fully in

New Opportunities for Software Productivity Improvement and Market

Impact of New Software Productivity Techniques. The problem has to

do with general systems quality issues and will be discussed later.)

-22-

©1985 by INPUT. Reproduction Prohibited. INPUT

The term "intelligent use" implies that 4GLs are best suited for developing

particular types of applications. The general network (or systems) structure

category contains only five subsets: input, transmission (communications),

processing, storage, and output. There is no question that 4GLs have historic-

ally addressed the output portion of this structure and can trace their

genealogy directly back to RPGs, albeit incorporating inverted rather than

sequential file structures (Lesson 7).

Viewed from the perspective of the systems type category (which includes

subsets of batch, transaction, interactive, realtime, decision support, and

expert), it is also quite clear that 4GLs are most attractive for decision

support systems. In other words, the oridignal purpose was to support query

and ad hoc reporting. The two lessons learned in the 1960s concerning

query/ad hoc reporting languages remain true today: access methods (by any

other name) are not enough to support management information systems (MIS

was the earlier name for decision support systems), and data structure

(models) and quality are required to support any information systems (Lessons

1 6 and 17).

In terms of the systems requirements category, which addresses performance

in terms of transaction rates, etc., it is apparent that 4GLs have traditionally

been used for developing relatively small systems which do not require large

transaction volumes, heavy processing, or fast response against large data

bases.

In terms of the network hierarchy category (large mainframes, minicom-

puters, intelligent workstations, terminals, and mobile terminals), 4GLs have

been primarily mainframe oriented.

Having answered the general "Easy for doing what?" question first, it is now

possible to address "Easy for whom?" INPUT has broken down the user set

category into nine subsets (scientific, engineering, systems/procedures

-23-

©1985 by INPUT. Reproduction Prohibited. INPUT

analyst, programmer, clerical/accounting, secretarial, administrative/mana-

gerial, executive, and casual).

In their early form, 4GLs were used primarily by analysts (or more

specifically analyst/programmers) and some end users in the

clerical/accounting and administrative/managerial (for ad hoc

reporting and query).

Most "professional" programmers view 4GLs as being inadequate for

any but the simplest reporting programs and are not impressed

(Lesson 19). In addition, there is a general feeling among the profes-

sionals that only analysts who adopt a "quick and dirty" approach are

attracted to 4GLs. This attitude continues to exist and is based

primarily on early efforts to implement "systems" using 4GLs. (For

example, personnel systems with wonderful reporting and query

capability but no provisions for updating files or security.)

This attitude on the part of the information systems department has

tended to keep 4GLs "under control" and confined their use as

described above.

DISTRIBUTED SYSTEMS DEVELOPMENT

However, because of the productivity problems within the IS department and

the advent of the personal computer, the environment has changed. This

change was described in detail in INPUT'S reports on productivity last year.

Essentially, a new development environment has been created, and it has the

following characteristics and ramifications:

The environment has been defined by INPUT as being one of distributed

systems development (DSD). The DSD environment is manifested in

personal computers, information centers, prototyping, and the desire

for micro-mainframe links.

-24-

11985 by INPUT. Reproduction Prohibited. INPUT

4GLs are one of the driving forces in the DSD environnnent, but it is

important to recognize a number of conflicts which will arise as that

environment evolves. INPUT identified the following which should be

of concern:

Top-down design versus bottom-up design.

Security versus access.

Ease of use versus added function.

Data quality versus distributed data bases.

Micro demands on mainframes versus off-loading of mainframes.

Management reports versus management reports (conflicting

information).

GST trends versus hardware/software planning.

These conflicts translate into some serious potential problems in terms

of systems quality and productivity.

Data base integrity and synchronization.

Security, protection, and privacy.

Conflicting reports to management.

Hardware performance problems.

Deterioration of data/information quality.

-25 -

©1985 by INPUT. Reproduction Prohibited. INPUT

Unanticipated expense.

Unworkable systenns solutions.

WHERE ARE FGLs GOING?

As the driving force behind information centers and prototyping, 4GLs are

evolving rapidly into FGLs (fourth, fifth, and/or future generation languages)

which can be used for more complex applications than their predecessors.

However, in breaking out of the restrictive environment in which they have

been placed by the IS department, they run the risk of attempting to breach

barriers which history tells us are quite formidable. Exhibit 111-12 summarizes

this challenge.

Having traditionally concentrated on the reporting requirements for

decision support systems (output), FGLs now aim at becoming the

primary development tool for major applications systems. This

involves the other fundamental systems functions of input, transmission

(communications), and processing. Lesson 15 pointed out that integra-

tion is accomplished at the cost of complexity. This complexity applies

not only to the developed system, but also to the tools (languages) used

for their development.

4GLs have found their primary use where the data and major applica-

tions are, in other words, on mainframes. As they expand to encompass

minicomputers and intelligent workstations, FGLs will run the risk of

failing to satisfy any of the diverse user sets along the way (Lesson

14). In addition, the integration of mainframe, minicomputer, and

intelligent workstation operating environments for development

purposes (to say nothing of targeting appropriate levels of the network

hierarchy for the resulting applications) represents a major technical

challenge (Lesson 15).

- 26 -

H985by INPUT. Reproduction Prohibited. INPUT

The evolution of 4GLs suitable for decision support systems toward

transaction processing and batch systems, in the belief that anything

written in 3GLs can best be done in 4GLs, defies Lessons 20 and 21.

Ease of use and flexibility are not free, and reduced performance will

restrict use of 4GLs (and FGLs) once this is proven again--and it will

be.

Lessons 20 and 21 also apply to the general trend from low to high in

the systems requirements (performance) category. There is a tendency

for both users and vendors to extend FGLs beyond their capabilities,

and the results may have impact on even the intelligent use of FGLs

because of overreaction as a result of the inevitable failures.

As the types of systems being developed with FGLs are extended, so

will the user set subsets being serviced. It is impossible to satisfy all

categories of users with a single language, and "ease of use" has

different meanings across user subsets, within a user subset (because of

individual aptitudes) and over time as users become more skilled.

Neither professional programmers or casual users will be satisfied with

any language designed for both (Lessons 3, 14, and 19).

• The current enthusiasm for 4GLs is understandable; they have permitted the

IS department to be more responsive to user requests and they have (when

properly employed) gotten users involved at an early stage in the development

process. Last year in Market Impact of New Opportunities Software

Productivity Improvement, INPUT stated that "unless the questions of

data/information quality and systems performance are addressed by FGLs,

they will prove to be self-defeating." There is real danger is misusing FGLs as

they are applied to more complex applications.

-27 -

©1985 by INPUT. Reproduction Prohibited. INPUT

B. PROBLEMS OF MISUSE

1. FGLs AND THE DSD ENVIRONMENT

• As the driving force beiiind the DSD environment, FGLs obviously have some

connection with any problems which arise in that environment. As INPUT

stated in New Opportunities in Software Productivity Improvements, . .to

the degree that the DSD environment creates IS problems, and fourth genera-

tion languages contribute to the implementation of that environment, fourth

generation languages must be analyzed as part of the problem in order to

ensure their continued acceptance.

• The problems which can be anticipated in the DSD environment were

mentioned briefly earlier in this report. It is strongly recommended that

these problems be understood as potential limiting factors in the FGL market-

place. Detailed evaluations of strengths and weaknesses in the DSD environ-

ment are contained in New Opportunities for Software Productivity

Improvement.

• Some of the evaluations (by IS management and industry experts) run counter

to the way FGLs are being sold in the marketplace. For example, the primary

disadvantage of prototyping is considered to be "excess resource use and

waste," whereas using FGLs for prototyping is being promoted as a primary

means of productivity improvement. Such obvious conflict requires better

understanding of what productivity really means.

2. PRODUCTIVITY AND PERFORMANCE

• In 1983 INPUT prepared a report on the Impact of Office Systems on

Productivity which explored the general problems of white collar produc-

tivity. It was concluded that generalizations about productivity improvement

were meaningless unless performance was measured in four ways;

-28-

©1985 by INPUT. Reproduction Prohibited. INPUT

Hardware/software.

Human/machine dyad.

Work unit.

InstitutionaL

This resulted in the establishment of the performance systems category

(Appendix A), and it was concluded that maximizing performance in one

category does not necessarily ensure corresponding improvement in any other

category; in fact, negative correlations can be established. The performance

systems category can, and should, be used to evaluate not only office automa-

tion systems but also the systems development environment and any resulting

applications systems.

While all of this may be considered a "bunch of theory," it is INPUT'S opinion

that the conclusions which have been reached using this methodology are

substantially closer to reality than any of the forecasts and/or competitive

assessments which are normally made for applications development tools. As

this report was being completed, a case of catastrophic misuse of a 4GL

occurred, and it will serve as a useful case study,

REALITY VERSUS THEORY IN 4GL MISUSE

The case study in 4GL misuse is the one involving the New Jersey Department

of Motor Vehicles as reported in Computerworid (9/30/85), and INPUT brings

it up with reluctance because none of us (usersj vendors, or consultants) come

out looking very good. However, there are some very important lessons to be

learned from this experience and the fact that it is being aired publicly is

healthy. All to frequently we try to bury our systems mistakes. Unlike the

consulting firm involved, which felt that, "We do not want to get into all the

-29 -

©1985 by INPUT. Reproduction Prohibited. INPUT

details. We do not feel that it would serve any useful purpose", INPUT

believes avoiding such nnisuse of FGLs in the future is necessary if markets

are to develop and users are to achieve improved productivity.

• Simply stated, the facts are as follows:

A prominent and well respected 4GL product (and supporting relational

DBMS) was recommended by a prominent and well respected consulting

firm for developing a new and improved motor vehicle registration

system for the state of New Jersey. The recommendation was justified

based on "productivity gains anticipated during the coding and testing

phases" of systems development (very much in line with the general

trends in the industry).

The results, once the system was installed (and presumably tested),

were as follows:

The system designed to support 1,000 terminals foundered at

200.

One problem was that specified response times of three to five

seconds exceeded five minutes.

The new system, which cost $6.5 million, is not capable of

keeping up with the daily workload even with overtime work.

Presumably the workload was previously being handled by some

less automated system.

The result has been that drivers have been unable to register

their vehicles or are incorrectly listed as being unregistered.

State police have been stopped from citing drivers for the

offense.

-30-

©1985 by INPUT. Reproduction Prohibited. INPUT

That is not all. Renewal notices have been sent to the wrong

drivers (those not due for registration), and many police cars and

other public vehicles have been registered to the wrong

municipality.

Not surprisingly, this has led the state of New Jersey (to say nothing of

the citizens) to raise some questions about the quality of the system.

One official was even reported to have said, "It was a real barn-burner

application, and I am not sure. . .(the 4GL). . .was the right technology

to use." It would appear that either theory dies hard in the face of

reality or that it is extremely difficult to be sure of anything when

confronted with systems catastrophe.

The consulting firm has agreed to "redo the system," but has made no

statements as to whether the anticipated "productivity gains during

coding and testing" were realized or what language and/or methodology

will be used during the rework.

The vendor of the 4GL has indicated that the consulting firm was

warned not to use the product to develop the system ("We found

ourselves in the unusual situation of our advice not being followed on

our product.") for the following reasons:

Batch sequential processing takes as many lines of code in the

4GL as it does in COBOL, and therefore there is "no advantage"

to using a 4GL.

Twenty percent of the subsystems required "heavy processing"

and should have been written in COBOL.

The whole situation has developed into a circular, finger-pointing

contest and there is certainly enough blame to go around, in addition,

it is not going to die down. The vendor has been reminded of previous

-31 -

©1985 by INPUT. Reproduction Prohibited. INPUT

public statements which claimed the product was "a functional

replacement for COBOL" and that "there is virtually nothing you can

develop in COBOL that you cannot also develop with. . ." These

statements are now being qualified by saying that this remains true for

"most applications."

One thing is certain—everyone directly involved has suffered substan-

tially already and the immediate impact will be unfavorable for roughly

comparable products.

• It is appropriate at this point to review this continuing case study against

INPUT'S systems categories and determine what could have been known in

advance of the New Jersey Motor Vehicle Registration System.

The productivity hierarchy system.s category was established as a result

of a major INPUT multiclient study in 1980. Essentially, the study

concluded that any productivity improvement program must be

composed of the following five elements (in decreasing order of

importance): 1) commitment to quality, 2) end-user involvement,

3) broadbased management, 4) high quality personnel, and 5) tools, aids,

and methodologies. From the facts above, it appears apparent that:

The commitment to quality on the part of the developer was

secondary to ease of coding and "getting something running."

The user felt his involvement (and responsibility) could be

minimized provided he was willing to buy a system.

The system development was managed solely by the consulting

firm which contracted to "deliver the system" and reportedly

ignored the advise of both the customer and the vendor in its use

of the 4GL.

-32-

11985 by INPUT. Reproduction Prohibited. INPUT

The use of the 4GL was obviously dictated by analysts and

designers who were at best naive and inexperienced. Perhaps

they had prototyped a few decision support systems, but it is

apparent that they were in over their heads at all stages of the

development process.

Given the weaknesses in the base of the productivity "pyramid,"

the choice of the right tools and aids was practically

immaterial; the effort was doomed from the start.

Adopting the development approach taken in the name of "anticipated

productivity," however, requires an evaluation against the performance

systems category. The following seem obvious and predictable:

Hardware/software performance suffered as a result of using

the 4GL; for example, response time was off by between one and

two orders of magnitude.

Perhaps performance at the human/machine dyad was enhanced

to the degree usually promised by proponents of 4GLs in terms

of relative lines of code—all the more reason to view produc-

tivity on a broader basis.

, Indeed, it is possible that the implementation project team

(work unit) got the system up and running faster than with a

third generation language, and even on schedule. But this does

not mean it was a highly productive effort—somebody has to

redo it.

From the point of view of the institution, the impact on produc-

tivity has been catastrophic. The state cannot register cars

even with overtime, and the police cannot tell whether cars are

registered, overdue for registration, or stolen (evidently, even

their own).

-33-

©1985 by INPUT. Reproduction Prohibited. INPUT

This is an excellent example of negative correlation(s) within

the perfornnance systems category and should illustrate the need

for the category to assure a broad view of performance

measurement.

Other systems categories mentioned earlier in this report can be

applied with similar telling effect against this case study, as can the

lessons we should have learned from the past. The one major lesson to

be learned from the case study is that FGLs are not a solution to all

applications and systems problems, and the penalties for believing (or

pretending) they are can be substantial.

• It is also important to point out that the case study demonstrates the reality

of the "theoretical" problems INPUT predicted for the DSD environment last

year (Chapter ill. Section 3 of this report). Specifically, it is a good example

of performance problems, data and information deterioration, unworkable

systems, and unanticipated costs, in other words, how 4GLs may be counter-

productive if they are misused.

• Before leaving the case study, INPUT would like to return to Lessons 20 and

21 (Exhibit III- 1) for just a moment and draw a few conclusions not directly

supported by published information on the case study at this time.

The response time problem experienced in the case study (as opposed to

any batch turnaround time they may have experienced) is probably

related more to data base design than it is to language use. While the

auto registration data base is large, it is not complex in terms of

content or use. If the relational model was employed, it is probable

that an unnecessary performance penalty was paid for flexibility on a

data base with highly predictable usage patterns (Lesson 20).

-34-

• 1985 by INPUT. Reproduction Prohibited. INPUT

Therefore, if the consulting firm merely rewrites the batch processing

modules in COBOL (as suggested by the vendor), it is probable that

response time will continue to be unacceptable as the active terminals

approach the specified 1000 level. Can all problems be solved with a

relational DBMS? Perhaps, but not with performance acceptable to all

users (for example, police officers in patrol cars), and poor perform-

ance will restrict use (Lesson 21).

IBM's STRATEGY

IBM's general strategy was outlined in the predecessor to the report Data Base

Management Systems. In that report, the four IBM strategic periods were

briefly described, and they will not be redefined here except to state that

there is a systems category which corresponds to them (Appendix A) and the

importance for FGLs is as follows:

During the current SNA/DDP period, IBM will concentrate on the

centralization of control under SNA, operating systems (VM/MVS and

others at various levels in the network hierarchy), and DBMSs. This

implies that the primary IBM competition for FGLs will evolve from its

DBMSs during that period. During this period, IBM will be happy to let

FGLs proliferate. They sell a lot of hardware and IBM cannot be held

responsible for catastrophic misuse. '

The electronic office period (1990-1995) will see IBM give more

attention to language development supporting decision support

systems. It is probable that such languages will address specific

industries and user sets. In other words, IBM will facilitate integration

of existing computer- and paper-based systems by providing familiar

(differentiated) languages.

-35-

©1985 by INPUT. Reproduction Prohibited. INPUT

This leads naturally to the expert systems period (1995-2000) where

languages will become specialized to the degree that they will be

mechanized within specific domains of knowledge-based systems.

IBM may feel that current 4GLs are only suitable for the information center

and cannot be used for the development of major systems in the electronic

office period (much less be able to evolve or even be adapted to play any

significant role in the expert systems period). It would certainly seem

plausible that if IBM thought 4GLs were a proper base for future language

development they would be doing something more than extending QBE and

SQL and marketing Intellect.

As always, it is wise to give some thought to what IBM may be thinking

regardless of whether you agree with it. As described in Data Base

Management Systems, IBM is emphasizing centralization during the SNA/DDP

period, and this has the effect of turning the large central host into a data

base machine, with the following ramifications:

Extracting data from large corporate or operating data bases (IMS) and

passing these data to planning or personal data bases (DB2) is essen-

tially a batch processing environment. INPUT believes that IBM

recognizes this and realizes that MVS/XA is well suited for this

environment (since this is what it evolved from).

Having had extensive experience with serial batch processing, IBM

recognizes that the performance penalties associated with many

current 4GLs makes them unsuitable for the development of such

applications. This conclusion would seem to be supported by IBM's

enhancement of its Query Management Facility to support the

initiation of batch jobs (as opposed . to enhancing the languages to

permit development of batch applications).

-36-

©1985 by INPUT. Reproduction Prohibited. INPUT

IBM must also be aware that the management and use of large data

bases (whether data reduction, extraction, information retrieval,

statistical analysis, or quality control) cannot be easily and/or

effectively described in English-like nonprocedural languages.

The large host data base machines of the SNA/DDP period do not

present a user friendly environment to those who only want results

without regard for how they are accomplished. Even if the 4GL-

generated application does not result in a catastrophe such as the New

Jersey Motor Vehicle Registration case study, the ongoing cost of the

system will certainly make the user want to know what is going on.

• in the electronic office period, the term INPUT uses to signify reduced paper

flow, this reduced paper flow implies significant changes not only in current

paper procedures, but also in current office automation systems which

expedite paper production.

The DSD environment and 4GLs have improved performance of the

human/machine dyad, but this has generally been accompanied by a

dramatic increase in paper documents of questionable value (quality).

The impacts on the performance (productivity) of individual work units

and at the institutional level have frequently been negative. (This is

the basis for INPUT'S continuing concern about information quality.)

The focus of the electronic office period will be toward improved

productivity at the work unit level.

Unlike the human/machine dyad where the concern is for generating

information from data according to individual and flexible needs, most

work units have stated goals and objectives based on established

systems and procedures. Paper documents proceed in some semblance

of order from workstation to workstation for human processing and/or

analysis. Systems to support the electronic office will be automating

data/information flow—a process.

-37-

©1985 by INPUT. Reproduction Prohibited. INPUT

PERT charts and flow diagrams are more appropriate than English for

describing such processes, and they are definitely procedural in

nature. Certainly, the developers of such applications will have to not

only understand how objectives are achieved, but will want to exercise

direct control over the process. In fact, the justification for the

substitution of electronic for paper media is usually based on consolida-

tion and elimination of workstations.

It is highly unlikely that such systems with all of their dependencies on

outside data and information sources can be designed from the bottom

up or evolved into being through prototyping. They are going to require

a professional systems and programming effort. It is INPUT'S belief

that IBM is adopting a cautious approach to both LANs and the "office

of the future" precisely because they recognize the magnitude of the

task. If 4GLs were capable of implementing the applications required

for the electronic office, the SNA/DDP period could be shortened

considerably. INPUT does not believe this can occur.

• When considering the expert systems strategic period, it is important to

recognize that there is great deal which can (and must) be done to improve

the decisionmaking process which goes beyond providing pretty information

(fancy reports and graphics) and yet falls short of the application of artificial

intelligence. There is an inherent danger in the DSD environment that tools

are dictating architecture of decision support systems, and this danger is

currently even more pronounced as we approach the expert systems period

(see Artificial Intelligence and Expert Systems, INPUT 1985). As far as

languages are concerned, there are some very clear messages.

The implementation of expert systems do not lend itself to description

in nonprocedural, English-like languages.

-38-

)1985by INPUT. Reproduction Prohibited. INPUT

The user interfaces to expert systems will have to be in more natural

language than that provided by current 4GLs.

Those skilled in English-like languages (including COBOL) are going to

have a great deal of difficulty with LISP-like languages. In fact,

"knowledge engineers" capable of developing and maintaining knowl-

edge-based systems are already beginning to appear.

It is probable that knowledge engineers are nothing more than

highly skilled programmers who would never be caught dead

programming in either COBOL or a 4GL.

Nonetheless, the most important function of the knowledge

engineer is to get the expert involved enough so the decision

rules employed in his particular domain can be described

(precisely the job of any good systems analyst).

There is one important attribute of expert systems which has been

recognized and should be carefully tracked as the systems develop.

There is a requirement that the system be able to explain to the user

how it has solved the problem (made the decision). This is directly

opposed to the current "results oriented" trend which states that the

user "need not be concerned" with where data is coming from or how a

program "works." As the human/machine dyad becomes more

symbiotic, there is a need for both to communicate clearly with each

other, and there is little reason to believe the human will be able to

dictate totally the language employed.

IBM's work on artificial intelligence is concentrated in the Research

Center at Yorktown Heights, and the recent announcement of Prolog

should not be viewed as the official "blessing" of the market. IBM

knows how long it takes for research projects to have any significant

impact on the market, and the announcement should be viewed as

-39-

©1985 by INPUT. Reproduction Prohibited. INPUT

nothing more as establishing a presence in the market. The real

purpose of the IBM announcement is to continue to apply pressure on

minicomputers in the network hierarchy.

• There is a tremendous gap between the capabilities of 4GLs and the require-

ments of all the IBM strategic periods. While it is probable that IBM knows

this, it should not be concluded that IBM has the solution to the language

problems. In fact, the FGL market is extremely promising precisely becasue

IBM, based on past experience, seems content to let others lead the way.

-40-

©1985 by INPUT. Reproduction Prohibited. INPUT

IV OPPORTUNITIES AND CHALLENGES

A. 4GLs TO FGLs

• As pointed out earlier in this report, there are certain barriers to expanding

the use of 4GLs. The case study identified the most critical and pressing of

these barriers as performance. There is a point where improved performance

at the human/machine dyad cannot be used to justify degraded performance at

the hardware/software level; the resulting systems will not (or cannot) be

used.

It is certainly a good indication that 4GLs have reached the point of

diminishing returns on trade-offs between the two levels when COBOL

is used as a standard for good performance. It is INPUT'S opinion that

as applications begin to spread across the processing hierarchy, the

expense of running batch jobs (even those written in COBOL) will begin

to receive renewed attention.

This will present those concerned with the development of FGLs with

both challenge and opportunity. Given COBOL as target and recog-

nizing that there are a variety of performance requirements along the

road from a first prototype, through testing, and finally into production

at various processing levels within the processing hierarchy, it should

be possible to leapfrog COBOL in terms of performance.

-41 -

©1985 by INPUT. Reproduction Prohibited. INPUT

Switching from an interpreter to a connpiler is not a magical solution to

the variety of performance requirements briefly outlined above. The

potentials for implementation of "quick and dirty" compilers and

cascading up and down the language hierarchy with translaters in

search of a good optimizer make both the choices and the results quite

complicated. These options and their ramifications will be discussed in

the next report of this set, Applications Development Techniques.

• During the course of the development of this report, the five-year effort to

define a new, "standard" version of COBOL neared completion. Over 20 years

ago, it was supposed to do all the wonderful things we are still talking about

today, and now there are those who are making similar claims for current

4GLs (except for the standardization). One of the driving forces behind

COBOL in its infancy was Jean Sammett, but she is now quoted in The

Computer Science and Engineering Research Study (published as "What Can Be

Automated?" MIT Press, 1980) as saying:

"Programming Languages, using any definition, are primary means by

which a person communicates with a computer. . .The real truth seems

to be that there is no single best way for people to communicate with a

computer, hence, no single solution. Thus, there will be no single

language useful to everyone. .
."

"Until we reach the situation described above (being able to instruct

computers in natural language), the next best thing will be 'user-

defined languages.' By this we mean (software) systems which permit

users, first, to define languages that fit their own needs with respect to

functional capability, jargon, and personal tastes in style, and then to

easily implement them. The key part of the problem is to provide a

system which permits easy implementation with an acceptable level of

efficiency."

-42-

)1985by INPUT. Reproduction Prohibited. INPUT

INPUT agrees with Ms. Sammet's comments with one exception. It is

our opinion that the quest for "instructing computers in natural

language," while a worthwhile goal of those doing research in Al, is

both impractical and undesirable for developing applications and/or

systems (especially if one is ever to achieve an acceptable level of

efficiency). The simple fact of the matter is that aptitudes for

abstract reasoning and verbal ability vary tremendously (extension of

Lesson 3), and there is no indication that outstanding programmers are

facile with English or that a writer for Computerworld could ever

figure out what went wrong with the New Jersey registration system.

The important point is that computer languages, like natural languages,

are going to continue to evolve, and arbitrary classification into

generations or attempts to standardize only serves to obfuscate this

fact. Attempts to apply 4GLs beyond their limits are doomed to

failure.

B. LANGUAGE EXTENSIBILITY

• The concept of user defined languages is obviously well suited to natural

evolution into FGLs, and it is not new, Technnically, the concept was born

with macro assembly programs, now referred to as extensible languages. Such

languages consist of three parts.

The base language, which INPUT believes should also be the systems

implementation language (SIL), which can be easily extended into a

limitless variety of programming languages, (The concept of using a

SIL to generate a compiler for itself is sometimes referred to as

"incestuous" use of a SIL and, while not new, is seldom kept pure in

implementation. It is especially important in the development of

extensible languages,)

-43-

11985 by INPUT. Reproduction Prohibited. INPUT

The metalanguage used to describe the necessary expansions, contrac-

tions, and other modifications to the base language and to create a new

language.

The derived language which then becomes the executable part of the

program.

It is obvious that the decision whether or not to open up the facilities of

extensible languages within any given user organization is an important one,

but the value for vendors in implementing new languages cannot be denied. In

addition, the potential for "accommodating" diverse languages in an already

chaotic network environment is of equal importance. The technical challenge

of extensible languages is great, but the opportunities are commensurate with

the challenge.

LANGUAGE OPPORTUNITIES AND STRATEGiC PERIODS

In New Opportunities for Software Productivity Improvements, INPUT

outlined a number of software tools and systems to control quality in the DSD

environment. All of those systems have language ramifications. Briefly,

those tools were as follows:

An Information Base Management System (IBMS) capable of managing

dictionaries and directories for both encoded (computerized) and paper-

based data/information bases. The need for languages suitable for

programmers, librarians, lexicographers, etc. is apparent. Such a

system is required right now during the SNA/DDP strategic period.

A Document Control System (DOCS) which requires tools to control an

expanded storage hierarchy (on-line, paper, micrographic, optical disk,

etc.) and languages (or diagrams) to permit the handling, control, and

-44-

©1985 by INPUT. Reproduction Prohibited. INPUT

processing of these documents. It is important to recognize the

distinction between information retrieval languages and those

envisioned here, where the user is concerned about the location,

movement, processing (or transformation), and control of a document.

For example, an operator may wish to direct a certain class of

retrieved documents in image form to a scanner/reader for selective

updating of an encoded data base. The development of such tools must

precede the electronic office strategic period.

Current languages for the development of expert systems (LISP and

PROLOG) will tend to slow development because there are not enough

people skilled in their use. There is also every indication that highly

skilled knowledge engineers will be required to maintain such systems

even after they are developed. This raises some rather embarassing

questions concerning the whole area of knowledge-based systems.

-45-

©1985 by INPUT. Reproduction Prohibited. INPUT

-46-

CONCLUSSONS AND RECOMMENDATIONS

CONCLUSIONS

Current 4GLs continue to be used primarily for secondary applications which

deal with data which has already been processed, but success with "pseudo"

production systems is leading to ottempts to develop larger production

systems which are transaction oriented. As 4GLs evolve into FGLs, this

testing of the boundaries of traditional use is natural and even desirable.

However, experience tells us that there will be substantial barriers to accept-

ance among some user sets.

As demonstrated by the case study in this report, the potential problems of

systems quality which were identified in Market Impact of New Software

Productivity Techniques are very real. Since 4GLs are the driving force

behind the DSD enviornment, they will be identified as part of the problem

whenever they are used in an inappropriate manner.

There is a natural tendency for solutions to the "productivity problem" to be

first overrated and then undervalued. It is probable that 4GLs reached their

peak of being overrated during the last year and may descend rapidly to being

undervalued because of adverse publicity associated with any failures which

will inevitably occur as the applications boundaries are tested.

-47-

©1985 by INPUT. Reproduction Prohibited. INPUT

• It is necessary to evaluate the impact of 4GLs against all performance levels

(hardware/software, human/machine dyad, work unit, and institutional) and

not merely against productivity in systems development. It is possible to be

highly productive in systems development at a cost which is unacceptable at

other performance levels.

• INPUT concludes that there is "residual expense" associated with the DSD

environment (and 4GLs) which can more than offset the benefits to be gained

from improved productivity in systems development. In addition to the

normally identified problem of continuing operational costs, the tendency of

evolving systems from the "bottom-up" encourages sloppy systems analysis

which can have enormous costs over the system's life cycle.

• While there is currently no simple way to understand this complex techno-

logical environment, INPUT believes that a good start has been made through

various reports we have published in the past and that these reports can give

our clients an advantage in making effective use of the latest technology with

minimum risk from unexpected impacts. During 1986, INPUT will emphasize

the need to analyze "residual expense" in our report series. This decision was

reached based on the conclusion that residual expense in the DSD environment

is usually substantially more important than concerns for hardware residual

values which receive so much attention early in the system's life cycle.

B. RECQMMENDAHQNS ^

• Fourth generation languages must be used within the context of their capabili-

ties. The New Jersey Motor Vehicles case shows the expense of crossing 4GL

contextual boundaries.

• Establish boundaries (standards) of use for 4GLs and other tools of the DSD

environment in terms of the following systems categories (Appendix A):

-48-

©1985 by INPUT. Reproduction Prohibited. INPUT

Network hierarchy.

Development/life cycle.

Systems type.

Systems requirements.

Performance.

Provide users with guidelines and tools to avoid premature attempts to

penetrate the boundaries established. In other words, avoid the natural

tendency on the part of both users and vendors to first overrate and then

undervalue applications development tools, aids, and methodologies.

Future languages will become more specialized, becoming both application

and user dependent. The challenge for information systems (IS) professionals

is to select the proper language for the correct circumstance. The growing

array of languages present a palette of choices. The incorrect selection can

cost more than the productivity savings that justified its use.

Remember, productivity improvements must transcend the entire system's

development/ life cycle. A narrow view of productivity gains can lead to

costly and embarassing occurances.

In the near term, confine the use of 4GLs to decision support and report and

query systems. Be sure you are aware of all the risks and costs of using non-

traditional languages to do traditional programs.

It is just as wrong to undervalue 4GLs as it is to overrate them. Productivity

improvements can be realized in getting ad hoc information to end users.

4GLs do have a place in IS' portfolio of languages and tools. It is IS' responsi-

-49-

©1985 by INPUT. Reproduction Prohibited. INPUT

bility to exploit a 4GL's strengths without using it as the universal solution to

the systems development productivity problem. The next report in this series,

Application Development Techniques, will focus on the tools available to

improve software development productivity.

• INPUT believes that there is a tremendous need for the rapid development of

4GLs into FGLs. The statement contained in New Opportunities for Software

Productivity Improvements still applies: ". . .it is INPUT'S opinion that unless

the questions of data/information quality and systems performance are

addressed by FGLs, they will prove to be self-defeating. We are betting that

will not happen." It is up to IS management to see that it does not.

-50-

)1985 by INPUT. Reproduction Prohibited. INPUT

APPENDIX A: INPUT SYSTEM CATEGORIES

A- GST DIRECTION

1- Centralization

2- Integration

3- Differentiation

4- Mechanization

B- QUALITY

1- Objectives

2- DIK

3- Auditability

4- Measurement

5- Feedback Loops

6- Validity/Reliability/Predictabiliy

7- Security/Privacy

C- NETWORK STRUCTURE

1- Input

2- Transmission

3- Processing

4- Storage

5- Output

-5! -

©1985 by INPUT. Reproduction Prohibited. INPUT

NETWORK HIERARCHY

1- Large Mainframes

2- Minicomputers

3- Intelligent Workstations

4- Terminals

5- Mobile Terminals

SOFTWARE HIERARCHY

1- SNA

2- Operating Systems

3- DBMS

4- Languages/DSS

5- Industry Turnkey

6- Applications

7- DIK

8- Users

DEVELOPMENT STRUCTURE

1- Design

2- Program

3- Work Unit Organization

4- Operational

5- Rigidity/Flexibility

DEVELOPMENT/LIFE CYCLE
1- Requirements

2- Specifications

3- Analysis

4- Design

5- Programming

6- Testing/Debugging

7- Documentation

8- Installation

9- Maintenance

-52-

©1985 by INPUT. Reproduction Prohibited.

H- SYSTEMS TYPE

1- Batch

2- Transaction

3- Interactive

4- Realtime

5- Decision Support

6- Expert

I- SYSTEMS REQUIREMENTS

1- High/Low Transactions Rates

2- High/Low Processing Requirements

3- Large/Small Data Base

4- High/Low Functionality

5- Many/Few Decision Rules

6^ High/Low Responsiveness

USER SET

i- Scientific

% Engineering

3- Systems/Procedures Analyst

4- Programmer

5- Clerical/Accounting

6- Secretarial

7- Administrative/Managerial

8- Executive '

9- Casual

PERFORMANCE
1- Hardware/Software

2- Human/Machine Dyad

3- Work Unit

4- Institutional

-53-

©1985 by INPUT. Reproduction Prohibited. INPUT

L- PRODUCTIVITY HIERARCHY

1- Tools/Aids/Methodologies

2- High Quality Personnel

3- Broadbased Management

4- End User Involvement

5- Commitment to Quality

M- IBM STRATEGIC PERIODS

1- SNA/DDP

2- Electronic Office

3- Expert Systems

4- Custom Systems

-54-

)1985by INPUT. Reproduction Prohibited. INPUT

INPUT 1943 Undings Drive, Mountain View, CA 94043, (415) 960-3990

